Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 21(1): 47-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34354215

RESUMO

Two-dimensional heterostructures are excellent platforms to realize twist-angle-independent ultra-low friction due to their weak interlayer van der Waals interactions and natural lattice mismatch. However, for finite-size interfaces, the effect of domain edges on the friction process remains unclear. Here we report the superlubricity phenomenon and the edge-pinning effect at MoS2/graphite and MoS2/hexagonal boron nitride van der Waals heterostructure interfaces. We found that the friction coefficients of these heterostructures are below 10-6. Molecular dynamics simulations corroborate the experiments, which highlights the contribution of edges and interface steps to friction forces. Our experiments and simulations provide more information on the sliding mechanism of finite low-dimensional structures, which is vital to understand the friction process of laminar solid lubricants.


Assuntos
Grafite , Fricção , Grafite/química , Simulação de Dinâmica Molecular
2.
Inorg Chem ; 58(22): 14939-14980, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31668070

RESUMO

Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields. This is the result of the debates of Symposium I "Atomic-scale design protocols towards energy, electronic, catalysis, and sensing applications", which took place within the 2018 European Materials Research Society fall meeting.

3.
ACS Appl Mater Interfaces ; 15(15): 19616-19623, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37023057

RESUMO

van der Waals (vdW) homo/heterostructures are ideal systems for studying interfacial tribological properties such as structural superlubricity. Previous studies concentrated on the mechanism of translational motion in vdW interfaces. However, detailed mechanisms and general properties of the rotational motion are barely explored. Here, we combine experiments and simulations to reveal the twisting dynamics of the MoS2/graphite heterostructure. Unlike the translational friction falling into the superlubricity regime with no twist angle dependence, the dynamic rotational resistances highly depend on twist angles. Our results show that the periodic rotational resistance force originates from structural potential energy changes during the twisting. The structural potential energy of MoS2/graphite heterostructure increases monotonically from 0° to 30° twist angles, and the estimated relative energy barrier is (1.43 ± 0.36) × 10-3 J/m2. The formation of Moiré superstructures in the graphene layer is the key to controlling the structural potential energy of the MoS2/graphene heterostructure. Our results suggest that in twisting 2D heterostructures, even if the interface sliding friction is negligible, the evolving potential energy change results in a nonvanishing rotational resistance force. The structural change of the heterostructure can be an additional pathway for energy dissipation in the rotational motion, further enhancing the rotational friction force.

4.
Front Chem ; 9: 684441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249859

RESUMO

Solid lubricants have received substantial attention due to their excellent frictional properties. Among others, molybdenum disulfide (MoS2) is one of the most studied lubricants. Humidity results in a deterioration of the frictional properties of MoS2. The actual mechanism at the nanoscale is still under debate, although there are indications that chemical reactions are not likely to occur in defect-free structures. In this study, we performed nonequilibrium molecular dynamics simulations to study the frictional properties of multilayer MoS2 during sliding in the presence of water. Moreover, we also investigated the effect of sliding speed and normal load. We confirmed earlier results that a thin layer of water organizes as a solidified, ice-like network of hydrogen bonds as a result of being confined in a two-dimensional fashion between MoS2. Moreover, we found that there exists an energy-driven, rotational dependence of the water network atop/beneath MoS2. This orientational anisotropy is directly related to the dissipative character of MoS2 during sliding. Finally, three distinct frictional regimes were identified, two for a thin layer of water and one for bulk water. In the case of a thin layer and low coverage, water represents a solid-like contaminant, causing high energy dissipation. For a thin layer and high coverage, water starts to act as a solid-like lubricant, reducing dissipation during sliding. Finally, a regime where water acts as a liquid lubricant, characterized by a clear velocity dependence was found.

5.
Sci Rep ; 10(1): 17314, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057206

RESUMO

Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.


Assuntos
DNA , Simulação de Dinâmica Molecular , Nucleossomos , Animais , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Histonas , Humanos , Conformação de Ácido Nucleico
6.
ACS Appl Mater Interfaces ; 12(40): 45214-45221, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894936

RESUMO

Recent research showed that the rotational degree of freedom in stacking 2D materials yields great changes in the electronic properties. Here, we focus on an often overlooked question: are twisted geometries stable and what defines their rotational energy landscape? Our simulations show how epitaxy theory breaks down in these systems, and we explain the observed behavior in terms of an interplay between flexural phonons and the interlayer coupling, governed by the moiré superlattice. Our argument, applied to the well-studied MoS2/graphene system, rationalizes experimental results and could serve as guidance to design twistronic devices.

7.
J Chem Theory Comput ; 16(9): 5972-5981, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810397

RESUMO

The pyrimidine-pyrimidone (6-4) photoproduct (64-PP) is an important photoinduced DNA lesion constituting a mutational signature for melanoma. The structural impact of 64-PP on DNA complexed with histones affects the lesion mutagenicity and repair but remains poorly understood. Here we investigate the conformational dynamics of DNA-containing 64-PP within the nucleosome core particle by atomic-resolution molecular dynamics simulations and multiscale data analysis. We demonstrate that the histone core exerts important mechanical restraints that largely decrease global DNA structural fluctuations. However, the local DNA flexibility at the damaged site is enhanced due to imperfect structural adaptation to restraints imposed by the histone core. If 64-PP faces the histone core and is therefore not directly accessible by the repair protein, the complementary strand facing the solvent is deformed and exhibits higher flexibility than the corresponding strand in a naked, undamaged DNA. This may serve as an initial recognition signal for repair. Our simulations also pinpoint the structural role of proximal residues from the truncated histone tails.


Assuntos
DNA/química , Histonas/química , Simulação de Dinâmica Molecular , Dímeros de Pirimidina/química , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA