Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33756110

RESUMO

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Sítios de Ligação de Anticorpos , Células CHO , Chlorocebus aethiops , Cricetulus , Epitopos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , SARS-CoV-2/imunologia , Células Vero
2.
Cell ; 149(1): 113-23, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22445172

RESUMO

The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100° domain rotation constituting the "power stroke" that ejects substrate into the folding chamber.


Assuntos
Chaperonina 60/química , Trifosfato de Adenosina/metabolismo , Bactérias/química , Bactérias/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Dobramento de Proteína
3.
Proc Natl Acad Sci U S A ; 119(31): e2205412119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35858383

RESUMO

Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure-activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein-nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Afinidade de Anticorpos , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Afinidade de Anticorpos/genética , Microscopia Crioeletrônica , Entropia , Engenharia Genética , Humanos , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Glicoproteína da Espícula de Coronavírus/imunologia
4.
J Struct Biol ; 215(2): 107959, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004781

RESUMO

Membrane proteins (MPs) are essential components of all biological membranes, contributing to key cellular functions that include signalling, molecular transport and energy metabolism. Consequently, MPs are important biomedical targets for therapeutics discovery. Despite hardware and software developments in cryo-electron microscopy, as well as MP sample preparation, MPs smaller than 100 kDa remain difficult to study structurally. Significant investment is required to overcome low levels of naturally abundant protein, MP hydrophobicity as well as conformational and compositional instability. Here we have reviewed the sample preparation approaches that have been taken to successfully express, purify and prepare small MPs for analysis by cryo-EM (those with a total solved molecular weight of under 100 kDa), as well as examining the differing approaches towards data processing and ultimately obtaining a structural solution. We highlight common challenges at each stage in the process as well as strategies that have been developed to overcome these issues. Finally, we discuss future directions and opportunities for the study of sub-100 kDa membrane proteins by cryo-EM.


Assuntos
Proteínas de Membrana , Manejo de Espécimes , Microscopia Crioeletrônica , Conformação Molecular , Membrana Celular
5.
Faraday Discuss ; 240(0): 261-276, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938521

RESUMO

Developments in cryo-EM have allowed atomic or near-atomic resolution structure determination to become routine in single particle analysis (SPA). However, near-atomic resolution structures determined using cryo-electron tomography and sub-tomogram averaging (cryo-ET STA) are much less routine. In this paper, we show that collecting cryo-ET STA data using the same conditions as SPA, with both correlated double sampling (CDS) and the super-resolution mode, allowed apoferritin to be reconstructed out to the physical Nyquist frequency of the images. Even with just two tilt series, STA yields an apoferritin map at 2.9 Å resolution. These results highlight the exciting potential of cryo-ET STA in the future of protein structure determination. While processing SPA data recorded in super-resolution mode may yield structures surpassing the physical Nyquist limit, processing cryo-ET STA data in the super-resolution mode gave no additional resolution benefit. We further show that collecting SPA data in the super-resolution mode, with CDS activated, reduces the estimated B-factor, leading to a reduction in the number of particles required to reach a target resolution without compromising the data size on disk and the area imaged in SerialEM. However, collecting SPA data in CDS does reduce throughput, given that a similar resolution structure, with a slightly larger B-factor, is achievable with optimised parameters for speed in EPU (without CDS).


Assuntos
Apoferritinas , Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Proteínas/química
6.
Blood ; 127(3): 343-51, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26637786

RESUMO

Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.


Assuntos
Eritrócitos/parasitologia , Eritrócitos/ultraestrutura , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Eritrócitos/metabolismo , Humanos , Proteínas de Membrana/metabolismo
9.
Methods ; 100: 42-9, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988127

RESUMO

As the resolutions of Three Dimensional Electron Microscopic reconstructions of biological macromolecules are being improved, there is a need for better fitting and refinement methods at high resolutions and robust approaches for model assessment. Flex-EM/MODELLER has been used for flexible fitting of atomic models in intermediate-to-low resolution density maps of different biological systems. Here, we demonstrate the suitability of the method to successfully refine structures at higher resolutions (2.5-4.5Å) using both simulated and experimental data, including a newly processed map of Apo-GroEL. A hierarchical refinement protocol was adopted where the rigid body definitions are relaxed and atom displacement steps are reduced progressively at successive stages of refinement. For the assessment of local fit, we used the SMOC (segment-based Manders' overlap coefficient) score, while the model quality was checked using the Qmean score. Comparison of SMOC profiles at different stages of refinement helped in detecting regions that are poorly fitted. We also show how initial model errors can have significant impact on the goodness-of-fit. Finally, we discuss the implementation of Flex-EM in the CCP-EM software suite.


Assuntos
Imageamento Tridimensional , Software , Adenilato Quinase/química , Adenilato Quinase/ultraestrutura , Chaperonina 60/química , Chaperonina 60/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/ultraestrutura , Modelos Moleculares , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura
10.
Mol Cell ; 34(1): 81-92, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19362537

RESUMO

The protein-remodeling machine Hsp104 dissolves amorphous aggregates as well as ordered amyloid assemblies such as yeast prions. Force generation originates from a tandem AAA+ (ATPases associated with various cellular activities) cassette, but the mechanism and allostery of this action remain to be established. Our cryoelectron microscopy maps of Hsp104 hexamers reveal substantial domain movements upon ATP binding and hydrolysis in the first nucleotide-binding domain (NBD1). Fitting atomic models of Hsp104 domains to the EM density maps plus supporting biochemical measurements show how the domain movements displace sites bearing the substrate-binding tyrosine loops. This provides the structural basis for N- to C-terminal substrate threading through the central cavity, enabling a clockwise handover of substrate in the NBD1 ring and coordinated substrate binding between NBD1 and NBD2. Asymmetric reconstructions of Hsp104 in the presence of ATPgammaS or ATP support sequential rather than concerted ATP hydrolysis in the NBD1 ring.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Microscopia Crioeletrônica , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/ultraestrutura , Hidrólise , Imageamento Tridimensional , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Especificidade por Substrato
11.
Proc Natl Acad Sci U S A ; 110(14): 5468-73, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23513222

RESUMO

The cross-ß amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of ß-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating human diseases, including several common forms of age-related dementia. Despite their importance, however, cross-ß amyloid fibrils have proved to be recalcitrant to detailed structural analysis. By combining structural constraints from a series of experimental techniques spanning five orders of magnitude in length scale--including magic angle spinning nuclear magnetic resonance spectroscopy, X-ray fiber diffraction, cryoelectron microscopy, scanning transmission electron microscopy, and atomic force microscopy--we report the atomic-resolution (0.5 Å) structures of three amyloid polymorphs formed by an 11-residue peptide. These structures reveal the details of the packing interactions by which the constituent ß-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils.


Assuntos
Amiloide/química , Amiloide/ultraestrutura , Modelos Moleculares , Estrutura Secundária de Proteína , Microscopia Crioeletrônica , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão e Varredura , Difração de Raios X
12.
Traffic ; 13(12): 1612-27, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22901061

RESUMO

Chlamydiae are obligate intracellular bacterial pathogens that replicate within a specialized membrane-bound compartment, termed an 'inclusion'. The inclusion membrane is a critical host-pathogen interface, yet the extent of its interaction with cellular organelles and the origin of this membrane remain poorly defined. Here we show that the host endoplasmic reticulum (ER) is specifically recruited to the inclusion, and that key rough ER (rER) proteins are enriched on and translocated into the inclusion. rER recruitment is a Chlamydia-orchestrated process that occurs independently of host trafficking. Generation of infectious progeny requires an intact ER, since ER vacuolation early during infection stalls inclusion development, whereas disruption post ER recruitment bursts the inclusion. Electron tomography and immunolabelling of Chlamydia-infected cells reveal 'pathogen synapses' at which ordered arrays of chlamydial type III secretion complexes connect to the inclusion membrane only at rER contact sites. Our data show a supramolecular assembly involved in pathogen hijack of a key host organelle.


Assuntos
Chlamydia trachomatis/patogenicidade , Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/microbiologia , Células HeLa , Humanos , Corpos de Inclusão/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico , Vesículas Secretórias/metabolismo , Vacúolos/metabolismo , Fatores de Virulência/metabolismo
13.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 259-269, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573522

RESUMO

The widespread adoption of cryoEM technologies for structural biology has pushed the discipline to new frontiers. A significant worldwide effort has refined the single-particle analysis (SPA) workflow into a reasonably standardized procedure. Significant investments of development time have been made, particularly in sample preparation, microscope data-collection efficiency, pipeline analyses and data archiving. The widespread adoption of specific commercial microscopes, software for controlling them and best practices developed at facilities worldwide has also begun to establish a degree of standardization to data structures coming from the SPA workflow. There is opportunity to capitalize on this moment in the maturation of the field, to capture metadata from SPA experiments and correlate the metadata with experimental outcomes, which is presented here in a set of programs called EMinsight. This tool aims to prototype the framework and types of analyses that could lead to new insights into optimal microscope configurations as well as to define methods for metadata capture to assist with the archiving of cryoEM SPA data. It is also envisaged that this tool will be useful to microscope operators and facilities looking to rapidly generate reports on SPA data-collection and screening sessions.


Assuntos
Imagem Individual de Molécula , Software , Microscopia Crioeletrônica , Coleta de Dados , Manejo de Espécimes
14.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 174-180, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376453

RESUMO

Electron cryo-microscopy image-processing workflows are typically composed of elements that may, broadly speaking, be categorized as high-throughput workloads which transition to high-performance workloads as preprocessed data are aggregated. The high-throughput elements are of particular importance in the context of live processing, where an optimal response is highly coupled to the temporal profile of the data collection. In other words, each movie should be processed as quickly as possible at the earliest opportunity. The high level of disconnected parallelization in the high-throughput problem directly allows a completely scalable solution across a distributed computer system, with the only technical obstacle being an efficient and reliable implementation. The cloud computing frameworks primarily developed for the deployment of high-availability web applications provide an environment with a number of appealing features for such high-throughput processing tasks. Here, an implementation of an early-stage processing pipeline for electron cryotomography experiments using a service-based architecture deployed on a Kubernetes cluster is discussed in order to demonstrate the benefits of this approach and how it may be extended to scenarios of considerably increased complexity.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica/métodos , Fluxo de Trabalho , Computação em Nuvem
15.
Biopolymers ; 99(11): 846-59, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23877967

RESUMO

This review is focused on the mechanisms by which ATP binding and hydrolysis drive chaperone machines assisting protein folding and unfolding. A survey of the key, general chaperone systems Hsp70 and Hsp90, and the unfoldase Hsp100 is followed by a focus on the Hsp60 chaperonin machine which is understood in most detail. Cryo-electron microscopy analysis of the E. coli Hsp60 GroEL reveals intermediate conformations in the ATPase cycle and in substrate folding. These structures suggest a mechanism by which GroEL can forcefully unfold and then encapsulate substrates for subsequent folding in isolation from all other binding surfaces.


Assuntos
Escherichia coli , Chaperonas Moleculares , Trifosfato de Adenosina/química , Chaperonina 60/química , Escherichia coli/metabolismo , Chaperonas Moleculares/química , Dobramento de Proteína
16.
Elife ; 122023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36805107

RESUMO

Serial focussed ion beam scanning electron microscopy (FIB/SEM) enables imaging and assessment of subcellular structures on the mesoscale (10 nm to 10 µm). When applied to vitrified samples, serial FIB/SEM is also a means to target specific structures in cells and tissues while maintaining constituents' hydration shells for in situ structural biology downstream. However, the application of serial FIB/SEM imaging of non-stained cryogenic biological samples is limited due to low contrast, curtaining, and charging artefacts. We address these challenges using a cryogenic plasma FIB/SEM. We evaluated the choice of plasma ion source and imaging regimes to produce high-quality SEM images of a range of different biological samples. Using an automated workflow we produced three-dimensional volumes of bacteria, human cells, and tissue, and calculated estimates for their resolution, typically achieving 20-50 nm. Additionally, a tag-free localisation tool for regions of interest is needed to drive the application of in situ structural biology towards tissue. The combination of serial FIB/SEM with plasma-based ion sources promises a framework for targeting specific features in bulk-frozen samples (>100 µm) to produce lamellae for cryogenic electron tomography.


Assuntos
Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Humanos , Microscopia Eletrônica de Varredura , Tomografia com Microscopia Eletrônica/métodos , Íons , Imageamento Tridimensional/métodos
17.
EMBO Rep ; 11(12): 936-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21072061

RESUMO

The eukaryotic exosome is a key nuclease for the degradation, processing and quality control of a wide variety of RNAs. Here, we report electron microscopic reconstructions and pseudo-atomic models of the ten-subunit Saccharomyces cerevisiae exosome in the unbound and RNA-bound states. In the RNA-bound structures, extra density that is visible at the entry and exit sites of the exosome channel indicates that a substrate-threading mechanism is used by the eukaryotic exosome. This channelling mechanism seems to be conserved in exosome-like complexes from all domains of life, and might have been present in the most recent common ancestor.


Assuntos
Exossomos/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Exossomos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Capuzes de RNA/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Front Mol Biosci ; 9: 903148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813832

RESUMO

The specimen preparation process is a key determinant in the success of any cryo electron microscopy (cryoEM) structural study and until recently had remained largely unchanged from the initial designs of Jacques Dubochet and others in the 1980s. The process has transformed structural biology, but it is largely manual and can require extensive optimisation for each protein sample. The chameleon instrument with its self-wicking grids and fast-plunge freezing represents a shift towards a robust, automated, and highly controllable future for specimen preparation. However, these new technologies require new workflows and an understanding of their limitations and strengths. As early adopters of the chameleon technology, we report on our experiences and lessons learned through case studies. We use these to make recommendations for the benefit of future users of the chameleon system and the field of cryoEM specimen preparation generally.

19.
Cell Host Microbe ; 30(1): 53-68.e12, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34921776

RESUMO

Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1, and Delta-B.1.617.2 variants of SARS-CoV-2 express multiple mutations in the spike protein (S). These may alter the antigenic structure of S, causing escape from natural or vaccine-induced immunity. Beta is particularly difficult to neutralize using serum induced by early pandemic SARS-CoV-2 strains and is most antigenically separated from Delta. To understand this, we generated 674 mAbs from Beta-infected individuals and performed a detailed structure-function analysis of the 27 most potent mAbs: one binding the spike N-terminal domain (NTD), the rest the receptor-binding domain (RBD). Two of these RBD-binding mAbs recognize a neutralizing epitope conserved between SARS-CoV-1 and -2, while 18 target mutated residues in Beta: K417N, E484K, and N501Y. There is a major response to N501Y, including a public IgVH4-39 sequence, with E484K and K417N also targeted. Recognition of these key residues underscores why serum from Beta cases poorly neutralizes early pandemic and Delta viruses.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Células Cultivadas , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Testes de Neutralização/métodos , Ligação Proteica/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
20.
Nat Struct Mol Biol ; 13(2): 147-52, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429154

RESUMO

The double-ring chaperonin GroEL and its lid-like cochaperonin GroES form asymmetric complexes that, in the ATP-bound state, mediate productive folding in a hydrophilic, GroES-encapsulated chamber, the so-called cis cavity. Upon ATP hydrolysis within the cis ring, the asymmetric complex becomes able to accept non-native polypeptides and ATP in the open, trans ring. Here we have examined the structural basis for this allosteric switch in activity by cryo-EM and single-particle image processing. ATP hydrolysis does not change the conformation of the cis ring, but its effects are transmitted through an inter-ring contact and cause domain rotations in the mobile trans ring. These rigid-body movements in the trans ring lead to disruption of its intra-ring contacts, expansion of the entire ring and opening of both the nucleotide pocket and the substrate-binding domains, admitting ATP and new substrate protein.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Regulação Alostérica , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/ultraestrutura , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/ultraestrutura , Microscopia Crioeletrônica , Hidrólise , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA