Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(5): 952-965.e18, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474921

RESUMO

Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Tronco Encefálico/metabolismo , Tronco Encefálico/virologia , RNA/química , RNA/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Encefalopatias Metabólicas Congênitas/patologia , Tronco Encefálico/patologia , Encefalite Viral/genética , Escherichia coli/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Herpesvirus Humano 1 , Humanos , Interferons/metabolismo , Íntrons/genética , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Fases de Leitura Aberta/genética , Linhagem , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/deficiência , RNA Nucleotidiltransferases/genética , Receptor 3 Toll-Like/metabolismo , Replicação Viral
2.
J Biol Chem ; 299(9): 105100, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507019

RESUMO

In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , RNA Nucleotidiltransferases , Humanos , Íntrons , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Splicing de RNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Enzimática/genética , Domínios Proteicos , Ligação Proteica , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Entamoeba histolytica/enzimologia , Entamoeba histolytica/genética , Metais Pesados/metabolismo
3.
RNA ; 28(7): 927-936, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459748

RESUMO

In eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 from Entamoeba histolytica uses combinations of Mn2+, Zn2+, and Fe2+ as enzymatic cofactors. Here, we examine the kinetic properties and metal dependence of the Dbr1 homolog from Saccharomyces cerevisiae (yDbr1). Elemental analysis measured stoichiometric quantities of Fe and Zn in yDbr1 purified following heterologous expression E. coli We analyzed the ability of Fe2+, Zn2+, and Mn2+ to reconstitute activity in metal-free apoenzyme. Purified yDbr1 was highly active, turning over substrate at 5.6 sec-1, and apo-yDbr1 reconstituted with Fe2+ was the most active species, turning over at 9.2 sec-1 We treated human lymphoblastoid cells with the iron-chelator deferoxamine and measured a twofold increase in cellular lariats. These data suggest that Fe is an important biological cofactor for Dbr1 enzymes.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Íntrons , Metais , RNA/química , RNA Nucleotidiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Electrophoresis ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785136

RESUMO

Double-stranded RNA is an immunogenic byproduct present in RNA synthesized with in vitro transcription. dsRNA byproducts engage virus-sensing innate immunity receptors and cause inflammation. Removing dsRNA from in vitro transcribed messenger RNA (mRNA) reduces immunogenicity and improves protein translation. Levels of dsRNA are typically 0.1%-0.5% of total transcribed RNA. Because they form such a minor fraction of the total RNA in transcription reactions, it is difficult to confidently identify discrete bands on agarose gels that correspond to the dsRNA byproducts. Thus, the sizes of dsRNA byproducts are largely unknown. Total levels of dsRNA are typically assayed with dsRNA-specific antibodies in ELISA and immuno dot-blot assays. Here we report a dsRNA-specific immuno-northern blot technique that provides a clear picture of the dsRNA size distributions in transcribed RNA. This technique could complement existing dsRNA analytical methods in studies of dsRNA byproduct synthesis, dsRNA removal, and characterization of therapeutic RNA drug substances.

5.
Biochemistry ; 61(24): 2933-2939, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36484984

RESUMO

The RNA lariat debranching enzyme is the sole enzyme responsible for hydrolyzing the 2'-5' phosphodiester bond in RNA lariats produced by the spliceosome. Here, we test the ability of Dbr1 to hydrolyze branched RNAs (bRNAs) that contain a 2'-5'-phosphorothioate linkage, a modification commonly used to resist degradation. We attempted to cocrystallize a phosphorothioate-branched RNA (PS-bRNA) with wild-type Entamoeba histolytica Dbr1 (EhDbr1) but observed in-crystal hydrolysis of the phosphorothioate bond. The crystal structure revealed EhDbr1 in a product-bound state, with the hydrolyzed 2'-5' fragment of the PS-bRNA mimicking the binding mode of the native bRNA substrate. These findings suggest that product inhibition may contribute to the kinetic mechanism of Dbr1. We show that Dbr1 enzymes cleave phosphorothioate linkages at rates ∼10,000-fold more slowly than native phosphate linkages. This new product-bound crystal structure offers atomic details, which can aid inhibitor design. Dbr1 inhibitors could be therapeutic or investigative compounds for human diseases such as human immunodeficiency virus (HIV), amyotrophic lateral sclerosis (ALS), cancer, and viral encephalitis.


Assuntos
RNA Nucleotidiltransferases , RNA , Humanos , RNA/química , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Splicing de RNA , Fosfatos/metabolismo
6.
Ecotoxicol Environ Saf ; 200: 110745, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460051

RESUMO

Chronic dietary bioaccumulation tests with rodents are required for new substances, including engineered nanomaterials (ENMs), in order to provide information on the potential hazards to human health. However, screening tools are needed to manage the diversity of ENMs and alternative methods are desirable with respect to animal welfare. Here, an ex vivo gut sac method was used to estimate the dietary bioaccumulation potential of silver nanomaterials. The entire gastrointestinal tract (except the caecum) was removed and filled with a gut saline containing 1 mg L-1 of Ag as either AgNO3, silver nanoparticles (Ag NPs) or silver sulphide nanoparticles (Ag2S NPs), and compared to controls with no added Ag. The gut sacs were incubated for 4 h, rinsed to remove excess media, and the total Ag determined in the mucosa and muscularis. There was no detected Ag in the control treatments. Within the Ag treatments, 1.4-22% of the exposure dose was associated with the tissues and serosal saline. Within the mucosa of the AgNO3 treatment, the highest Ag concentration was associated with the intestinal regions (3639-7087 ng g-1) compared to the stomach (639 ± 128 ng g-1). This pattern was also observed in the Ag NP and Ag2S NP treatments, but there was no significant differences between any Ag treatments for the mucosa. However, differences between treatments were observed in the muscularis concentration. For example, both the Ag NP (907 ± 284 ng g -1) and Ag2S NP (1482 ± 668 ng g-1) treatments were significantly lower compared to the AgNO3 treatment (2514 ± 267 ng g-1). The duodenum demonstrated serosal accumulation in both the AgNO3 (~10 ng mL-1) and Ag NP (~3 ng mL-1) treatments. The duodenum showed some of the highest Ag accumulation with 41, 61 and 57% of the total Ag in the mucosa compared to the muscularis for the AgNO3, Ag NP and Ag2S NP treatments, respectively. In conclusion, the ex vivo gut sac method demonstrates the uptake of Ag in all Ag treatments, with the duodenum the site of highest accumulation. Based on the serosal saline accumulation, the ranked order of accumulation is AgNO3 > Ag NPs > Ag2S NPs.


Assuntos
Trato Gastrointestinal/metabolismo , Nanopartículas Metálicas , Compostos de Prata/metabolismo , Nitrato de Prata/metabolismo , Prata/metabolismo , Animais , Bioacumulação , Dieta , Intestinos , Mucosa/metabolismo , Ratos Wistar , Estômago
7.
Ecotoxicol Environ Saf ; 190: 109985, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841893

RESUMO

Effort has been made to standardise regulatory ecotoxicity tests for engineered nanomaterials (ENMs), but the environmental realism of altered water quality and/or pulse exposure to these pollutants should be considered. This study aimed to investigate the relative toxicity to early life-stage zebrafish of CuO ENMs at acid pH and then under pulse exposure conditions, all compared to CuSO4. At all pH values, CuSO4 was more toxic to zebrafish than CuO ENMs. Additions of H+ were protective of CuSO4 toxicity, with median lethal concentrations LC50 (with 95% confidence intervals) of: 0.36 (0.33-0.40), 0.22 (0.20-0.24) and 0.27 (0.25-0.29) mg L-1 at pH 5, pH 6 and pH 7, respectively. In contrast, the toxicity of CuO ENMs increased with acidity; LC50 values were: 6.6 (4.5-8.5), 19.4 (11.6-27.2) and >100 mg L-1 at pH 5, pH 6 and pH 7, respectively. The increased toxicity of the CuO ENMs in acid water corresponded with greater dissolution of dissolved Cu from the particles at low pH, suggesting free Cu2+ ion delivery to the zebrafish was responsible for the pH-effect. In continuous 96 h exposures to the substances at the LC10 values and at pH 6, both CuSO4 and CuO ENMs caused Cu accumulation, inhibition of Na+/K+-ATPase and depletion of total glutathione in zebrafish. However, two 24 h pulses of CuSO4 or CuO ENMs at the same peak concentration caused similar effects to the continuous 96 h exposure, despite the shorter exposure durations of the former; suggesting that the pulses were more hazardous than the continuous exposure. In conclusion, the current water quality correction for pH with respect to Cu toxicity to freshwater fish should not be applied to the nano form. Crucially, CuO ENMs are more toxic in pulse than continuous exposure and new corrections for both water pH and the Cu exposure profile are needed for environmental risk assessment.


Assuntos
Sulfato de Cobre/toxicidade , Cobre/toxicidade , Nanoestruturas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Concentração de Íons de Hidrogênio , Dose Letal Mediana , Água/química , Peixe-Zebra/embriologia
8.
Proc Natl Acad Sci U S A ; 113(51): 14727-14732, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930312

RESUMO

Intron lariats are circular, branched RNAs (bRNAs) produced during pre-mRNA splicing. Their unusual chemical and topological properties arise from branch-point nucleotides harboring vicinal 2',5'- and 3',5'-phosphodiester linkages. The 2',5'-bonds must be hydrolyzed by the RNA debranching enzyme Dbr1 before spliced introns can be degraded or processed into small nucleolar RNA and microRNA derived from intronic RNA. Here, we measure the activity of Dbr1 from Entamoeba histolytica by using a synthetic, dark-quenched bRNA substrate that fluoresces upon hydrolysis. Purified enzyme contains nearly stoichiometric equivalents of Fe and Zn per polypeptide and demonstrates turnover rates of ∼3 s-1 Similar rates are observed when apo-Dbr1 is reconstituted with Fe(II)+Zn(II) under aerobic conditions. Under anaerobic conditions, a rate of ∼4.0 s-1 is observed when apoenzyme is reconstituted with Fe(II). In contrast, apo-Dbr1 reconstituted with Mn(II) or Fe(II) under aerobic conditions is inactive. Diffraction data from crystals of purified enzyme using X-rays tuned to the Fe absorption edge show Fe partitions primarily to the ß-pocket and Zn to the α-pocket. Structures of the catalytic mutant H91A in complex with 7-mer and 16-mer synthetic bRNAs reveal bona fide RNA branchpoints in the Dbr1 active site. A bridging hydroxide is in optimal position for nucleophilic attack of the scissile phosphate. The results clarify uncertainties regarding structure/function relationships in Dbr1 enzymes, and the fluorogenic probe permits high-throughput screening for inhibitors that may hold promise as treatments for retroviral infections and neurodegenerative disease.


Assuntos
Cristalografia por Raios X/métodos , Entamoeba histolytica/enzimologia , Proteínas de Protozoários/química , RNA Nucleotidiltransferases/química , RNA/química , Catálise , Cristalização , Hidrólise , Íntrons , Ferro/química , Cinética , Espectrometria de Massas , Mutação , Peptídeos/química , Precursores de RNA/química , Splicing de RNA , RNA Circular , Raios X , Zinco/química
9.
J Biol Chem ; 292(27): 11154-11164, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28536265

RESUMO

The antischistosomal prodrug oxamniquine is activated by a sulfotransferase (SULT) in the parasitic flatworm Schistosoma mansoni. Of the three main human schistosome species, only S. mansoni is sensitive to oxamniquine therapy despite the presence of SULT orthologs in Schistosoma hematobium and Schistosoma japonicum The reason for this species-specific drug action has remained a mystery for decades. Here we present the crystal structures of S. hematobium and S. japonicum SULTs, including S. hematobium SULT in complex with oxamniquine. We also examined the activity of the three enzymes in vitro; surprisingly, all three are active toward oxamniquine, yet we observed differences in catalytic efficiency that implicate kinetics as the determinant for species-specific toxicity. These results provide guidance for designing oxamniquine derivatives to treat infection caused by all species of schistosome to combat emerging resistance to current therapy.


Assuntos
Resistência a Medicamentos , Proteínas de Helminto/química , Oxamniquine , Schistosoma haematobium/enzimologia , Schistosoma japonicum/enzimologia , Sulfotransferases/química , Animais , Cristalografia por Raios X , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Sulfotransferases/genética
10.
Ecotoxicol Environ Saf ; 152: 121-131, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407778

RESUMO

Silver nanoparticles (Ag NPs) are known for their antibacterial properties and are used in a growing number of nano-enabled products, with inevitable concerns for releases to the environment. Nanoparticles may also be antigenic and toxic to the haematopoietic system, but the immunotoxic effect of Ag NPs on non-target species such as fishes is poorly understood. This study aimed to assess the effect of Ag NP exposure via the water on the haematopoietic system of rainbow trout, Oncorhynchus mykiss, and to determine whether or not the hazard from Ag NPs was different from that of AgNO3. Fish were exposed for 7 days to a control (dechlorinated Plymouth freshwater), dispersant control, 1µgl-1 Ag as AgNO3 or 100µgl-1 Ag NPs. Animals were sampled on days 0, 4 and 7 for haematology, tissue trace metal concentration, biochemistry for evidence of oxidative stress/inflammation in the spleen and histopathology of the blood cells and spleen. The Ag NP treatment significantly increased the haematocrit, but the haematological changes were within the normal physiological range of the animal. Thrombocytes in spleen prints at day 4, and melanomacrophage deposits at day 7 in the spleen, of Ag NP exposed-fish displayed significant increases compared to all the other treatments within the time point. A dialysis experiment confirmed that dissolution rates were very low and any pathology observed is likely from the NP form rather than dissolved metal released from it. Overall, the data showed subtle differences in the effects of Ag NPs compared to AgNO3 on the haematopoietic system. The lack of pathology in the circulating blood cells and melanomacrophage deposits in the spleen suggests a compensatory physiological effort by the spleen to maintain normal circulating haematology during Ag NP exposure.


Assuntos
Sistema Hematopoético/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Oncorhynchus mykiss/sangue , Nitrato de Prata/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sistema Hematopoético/patologia , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/patologia
11.
Nucleic Acids Res ; 42(16): 10845-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25123664

RESUMO

The enzymatic processing of cellular RNA molecules requires selective recognition of unique chemical and topological features. The unusual 2',5'-phosphodiester linkages in RNA lariats produced by the spliceosome must be hydrolyzed by the intron debranching enzyme (Dbr1) before they can be metabolized or processed into essential cellular factors, such as snoRNA and miRNA. Dbr1 is also involved in the propagation of retrotransposons and retroviruses, although the precise role played by the enzyme in these processes is poorly understood. Here, we report the first structures of Dbr1 alone and in complex with several synthetic RNA compounds that mimic the branchpoint in lariat RNA. The structures, together with functional data on Dbr1 variants, reveal the molecular basis for 2',5'-phosphodiester recognition and explain why the enzyme lacks activity toward 3',5'-phosphodiester linkages. The findings illuminate structure/function relationships in a unique enzyme that is central to eukaryotic RNA metabolism and set the stage for the rational design of inhibitors that may represent novel therapeutic agents to treat retroviral infections and neurodegenerative disease.


Assuntos
Íntrons , RNA Nucleotidiltransferases/química , Entamoeba histolytica/enzimologia , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , RNA Nucleotidiltransferases/metabolismo
12.
Anim Cogn ; 18(5): 1165-79, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26139343

RESUMO

We describe the repertoire of learned vocal and breathing-related behaviors (VBBs) performed by the enculturated gorilla Koko. We examined a large video corpus of Koko and observed 439 VBBs spread across 161 bouts. Our analysis shows that Koko exercises voluntary control over the performance of nine distinctive VBBs, which involve variable coordination of her breathing, larynx, and supralaryngeal articulators like the tongue and lips. Each of these behaviors is performed in the context of particular manual action routines and gestures. Based on these and other findings, we suggest that vocal learning and the ability to exercise volitional control over vocalization, particularly in a multimodal context, might have figured relatively early into the evolution of language, with some rudimentary capacity in place at the time of our last common ancestor with great apes.


Assuntos
Gorilla gorilla/fisiologia , Mecânica Respiratória/fisiologia , Vocalização Animal/fisiologia , Animais , Feminino , Gestos , Laringe , Boca , Gravação em Vídeo
13.
J Org Chem ; 80(20): 10108-18, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26378468

RESUMO

Two RNA fragments linked by means of a 2',5' phosphodiester bridge (2' hydroxyl of one fragment connected to the 5' hydroxyl of the other) constitute a class of nucleic acids known as 2'-5' branched RNAs (bRNAs). In this report we show that bRNA analogues containing 2'-5' phosphoramidate linkages (bN-RNAs) inhibit the lariat debranching enzyme, a 2',5'-phosphodiesterase that has recently been implicated in neurodegenerative diseases associated with aging. bN-RNAs were efficiently generated using automated solid-phase synthesis and suitably protected branchpoint building blocks. Two orthogonally removable groups, namely the 4-monomethoxytrityl (MMTr) group and the fluorenylmethyl-oxycarbonyl (Fmoc) groups, were evaluated as protecting groups of the 2' amino functionality. The 2'-N-Fmoc methodology was found to successfully produce bN-RNAs on solid-phase oligonucleotide synthesis. The synthesized bN-RNAs resisted hydrolysis by the lariat debranching enzyme (Dbr1) and, in addition, were shown to attenuate the Dbr1-mediated hydrolysis of native bRNA.


Assuntos
Amidas/química , Ácidos Fosfóricos/química , RNA Nucleotidiltransferases/química , RNA/química , RNA/síntese química , Humanos , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Nucleotidiltransferases/antagonistas & inibidores , Splicing de RNA , Técnicas de Síntese em Fase Sólida
14.
Proc Natl Acad Sci U S A ; 109(43): 17400-5, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045655

RESUMO

Schindler/Kanzaki disease is an inherited metabolic disease with no current treatment options. This neurologic disease results from a defect in the lysosomal α-N-acetylgalactosaminidase (α-NAGAL) enzyme. In this report, we show evidence that the iminosugar DGJNAc can inhibit, stabilize, and chaperone human α-NAGAL both in vitro and in vivo. We demonstrate that a related iminosugar DGJ (currently in phase III clinical trials for another metabolic disorder, Fabry disease) can also chaperone human α-NAGAL in Schindler/Kanzaki disease. The 1.4- and 1.5-Å crystal structures of human α-NAGAL complexes reveal the different binding modes of iminosugars compared with glycosides. We show how differences in two functional groups result in >9 kcal/mol of additional binding energy and explain the molecular interactions responsible for the unexpectedly high affinity of the pharmacological chaperones. These results open two avenues for treatment of Schindler/Kanzaki disease and elucidate the atomic basis for pharmacological chaperoning in the entire family of lysosomal storage diseases.


Assuntos
Chaperonas Moleculares/farmacologia , alfa-N-Acetilgalactosaminidase/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Termodinâmica
15.
J ECT ; 30(4): 303-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24755726

RESUMO

OBJECTIVE: Cochlear implants (CI) are neural prostheses that restore hearing to individuals with profound sensorineural hearing loss. The surgically implanted component consists of an electrode array, which is threaded into the cochlea, and an electronic processor, which is buried under the skin behind the ear. The Food and Drug Administration and CI manufacturers contend that electroconvulsive therapy (ECT) is contraindicated in CI recipients owing to risk of damage to the implant and/or the patient. We hypothesized that ECT does no electrical damage to CIs. METHODS: Ten functional CIs were implanted in 5 fresh cadaveric human heads. Each head then received a consecutive series of 12 unilateral ECT sessions applying maximum full pulse-width energy settings. Electroconvulsive therapy was delivered contralaterally to 5 CIs and ipsilaterally to 5 CIs. Electrical integrity testing (impedance testing) of the electrode array was performed before and after CI insertion, and after the first, third, fifth, seventh, ninth, and 12th ECT sessions. Electroconvulsive therapy was performed by a staff psychiatrist experienced with the technique. Explanted CIs were sent back to the manufacturer for further integrity testing. RESULTS: No electrical damage was identified during impedance testing. Overall, there were statistically significant decreases in impedances (consistent with no electrical damage) when comparing pre-ECT impedance values to those after 12 sessions. There was no statistically significant difference (P > 0.05) in impedance values comparing ipsilateral to contralateral ECT. Manufacturer testing revealed no other electrical damage to the CIs. CONCLUSION: Electroconvulsive therapy does not seem to cause any detectable electrical injury to CIs.


Assuntos
Implantes Cocleares/normas , Impedância Elétrica , Eletroconvulsoterapia , Cadáver , Eletrodos Implantados , Lateralidade Funcional , Humanos
16.
Environ Pollut ; 342: 123141, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097159

RESUMO

The present research assessed, for the first time, toxicity of ZIF-8 (1 mg/L) and the building blocks (0.1 mg/L Zn2+ and 0.4 mg/L 2-methylimidazole (2-MIm)), besides that of AgNPs@ZIF-8 (0.25, 0.5, and 1 mg/L) and AgNO3 (0.1 mg/L) to aquatic organisms. Two consecutive generations (F0 & F1) of Artemia salina were exposed to these chemicals. All of the chemical treatments considerably caused mortality in F0, especially AgNPs@ZIF-8 and AgNO3, whereas F1 displayed notable tolerance and survived comparable to the control group, except in the case of AgNO3 treatment. Similarly, growth indices (weight, mainly in ZIF-8, Zn2+, and 2-MIm; length, in Ag-doped ZIF-8 and AgNO3) were significantly retarded in F0 and especially F1 of all treatments, and 2-MIm caused the greatest length retardation in F0. AgNPs@ZIF-8 (0.5 and 1 mg/L), 2-MIm, and AgNO3 postponed the ovary emergence in about 40%-60% of the exposed F0, and ZIF-8 delayed this phenomenon in some individuals of F0 and F1 up to 6 days. This temporal disturbance was also observed in time to first brood of almost all experimental F0 and F1 groups, with being over 80% of F1 exposed to ZIF-8, 2-MIm, and Zn2+, as well as about 50% of F0 treated with 2-MIm, and Zn2+. The highest neonate number was recorded for F0 and F1 exposed to AgNO3 and Zn2+, while ZIF-8 and, importantly, 2-MIm decreased the reproductivity to the lowest levels in both generations. Generally, the reproductive frequency was significantly decreased in all F0 and F1 treatments, especially 2-MIm, ZIF-8, AgNPs@ZIF-8 (0.25 & 1 mg/L). This study highlighted the neglected importance of 2-MIm in assessing overall toxicity of ZIF-8, and even other organic ligands of MOFs, and also filled a gap in the literature by investigating the potential effect of additives such as AgNPs on the toxicity of ZIF-8 and other MOFs.


Assuntos
Artemia , Nanopartículas , Humanos , Animais , Feminino , Recém-Nascido , Reprodução
17.
Nat Commun ; 15(1): 4617, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816363

RESUMO

The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of a viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectrometry. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.


Assuntos
Íntrons , Splicing de RNA , Spliceossomos , Humanos , Íntrons/genética , Spliceossomos/metabolismo , Células HEK293 , RNA Nucleotidiltransferases/metabolismo , RNA Nucleotidiltransferases/genética , Éxons/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células HeLa , Sítios de Splice de RNA
18.
Chemosphere ; 341: 140058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673182

RESUMO

Assessing the dietary accumulation of nanoplastics in animals following very-low exposure concentrations is restricted due to analytical limitations. This study adapted a method for synthesising semi-stable 14C-PS NPs (through styrene polymerisation) in small volumes for deployment in environmental studies. The method was developed with non-labelled material where the final polystyrene product had a primary particle size of 35 ± 8 nm (as measured by transmission electron microscopy). This method was then applied to 14C-labelled styrene to produce radiolabelled polystyrene nanoplastics (14C-PS NPs). The 14C-PS NPs were added (top-dressed) to a commercially available fish feed, with a measured concentration of 27.9 ± 2.1 kBq kg-1 (n = 5), equating to 5.9 µg polystyrene kg-1 feed. Fish (rainbow trout; Oncorhynchus mykiss) were fed this diet at a ration of 2% body weight per day for a period of two weeks. On day 3, 7 and 14, the fish were sampled for the mid intestine, hind intestine, kidney and liver, and measured for tissue radioactivity (determined by liquid scintillation counting). Some background activity was detected in the control samples (e.g., 1-16 and 4-11 Bq g-1 in the hind intestine and liver, respectively) which is due to natural background fluorescence. By the end of the experiment, the hind intestine and liver had significantly elevated radioactivity (25.3 and 15.0 Bq g-1, respectively) compared to the control, indicating the accumulation of nano polystyrene. In the liver, this equated to 1.8 µg polystyrene g-1 dry weight. This study confirms the accumulation of nano particles in vertebrates at low, environmentally relevant concentration, and highlights radiolabelling as a methodological approach suitable for exploring the bioaccumulation of nanoplastics and potential impacts.

19.
Sci Total Environ ; 854: 158765, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113800

RESUMO

The ingestion of nanoplastics (NPs) by fish has led to concerns regarding fish health and food chain transfer, but analytical constraints have hindered quantitative data collection on their uptake and depuration. We used palladium-doped polystyrene nanoplastics (PS-Pd NPs, ~200 nm) to track particle fate in rainbow trout (Oncorhynchus mykiss) during a week-long dietary exposure and subsequent 7-day depuration period on a control diet (no added PS-Pd NPs). At Day 3 and 7 of the exposure, and after depuration, the mid intestine, hind intestine, liver, gallbladder, kidney, gill and carcass were sampled. All organs and the carcass were analysed for total Pd content by inductively couple plasma mass spectrometry. After 3 days of exposure, the mid (32.5 ± 8.3 ng g-1) and hind (42.3 ± 8.2 ng g-1) intestine had significantly higher total Pd concentrations compared to the liver and carcass (1.3 ± 0.4 and 3.4 ± 1.1 ng g-1, respectively). At Day 7, there was no time-related difference in any organ (or the carcass) total Pd concentrations compared to Day 3. When the total Pd content was expressed as a body distribution based on mass of tissue, the carcass contained the highest fraction with 72.5 ± 5.2 % at Day 7, which could raise concerns over transfer to higher trophic levels. The total number of particles that entered the fish over the 7 days was 94.5 ± 13.5 × 106 particles, representing 0.07 ± 0.01 % of the Pd the fish had been fed. Following depuration, there was no detectable Pd in any organ or the carcass, indicating clearance from the fish. These data indicate that these NPs are taken into the internal organs and carcass of fish, yet removal of the exposure results in substantial excretion to below the limit of detection.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Microplásticos , Paládio , Poliestirenos , Exposição Dietética , Dieta
20.
Glob Chall ; 7(8): 2300036, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37635705

RESUMO

Over recent decades, there has been a dramatic increase in the manufacture of engineered nanomaterials, which has inevitably led to their environmental release. Zinc oxide (ZnO) is among the more abundant nanomaterial manufactured due to its advantageous properties, used for piezoelectric, semiconducting, and antibacterial purposes. Plastic waste is ubiquitous and may break down or delaminate into smaller microplastics, leaving open the question of whether these small polymers may alter the fate of ZnO through adsorption within aquatic media (tap-water and seawater). Here, scanning electron microscopy analysis confirms the effective Zn nano/microstructures adsorption onto polystyrene surfaces after only 24-h incubation in the aquatic media. After pre-aging the nanomaterials for 7-days in different environmental media, nanoprobe X-ray absorption near-edge spectroscopy analysis reveals significant ZnO transformation toward Zn-sulfide and Zn-phosphate. The interaction between a commercial ZnO-based sunscreen with polystyrene and a cleanser consumer containing microbeads with ZnO nanomaterials is also studied, revealing the adsorption of transformed Zn-species in the microplastics surfaces, highlighting the environmental relevancy of this work. Understanding the structural and functional impacts of the microplastics/ZnO complexes, and how they evolve, will provide insights into their chemical nature, stability, transformations, and fate, which is key to predicting their bioreactivity in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA