Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Environ Sci Technol ; 56(8): 5029-5036, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390256

RESUMO

Over the last several decades, there have been several studies examining the radiation stability of boehmite and other aluminum oxyhydroxides, yet less is known about the impact of radiation on boehmite dissolution. Here, we investigate radiation effects on the dissolution behavior of boehmite by employing liquid-phase transmission electron microscopy (LPTEM) and varying the electron flux on the samples consisting of either single nanoplatelets or aggregated stacks. We show that boehmite nanoplatelets projected along the [010] direction exhibit uniform dissolution with a strong dependence on the electron dose rate. For nanoplatelets that have undergone oriented aggregation, we show that the dissolution occurs preferentially at the particles at the ends of the stacks that are more accessible to bulk solution than at the others inside the aggregate. In addition, at higher dose rates, electrostatic repulsion and knock-on damage from the electron beam causes delamination of the stacks and dissolution at the interfaces between particles in the aggregate, indicating that there is a threshold dose rate for electron-beam enhancement of dissolution of boehmite aggregates.

2.
Magn Reson Chem ; 60(2): 226-238, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34536037

RESUMO

Although nanometer-sized aluminum hydroxide clusters (i.e., ϵ-Al13 , [Al13 O4 (OH)24 (H2 O)12 ]7+ ) command a central role in aluminum ion speciation and transformations between minerals, measurement of their translational diffusion is often limited to indirect methods. Here, 27 Al pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has been applied to the AlO4 core of the ϵ-Al13 cluster with complementary theoretical simulations of the diffusion coefficient and corresponding hydrodynamic radii from a boundary element-based calculation. The tetrahedral AlO4 center of the ϵ-Al13 cluster is symmetric and exhibits only weak quadrupolar coupling, which results in favorable T1 and T2 27 Al NMR relaxation coefficients for 27 Al PFGSTE NMR studies. Stokes-Einstein relationship was used to relate the 27 Al diffusion coefficient of the ϵ-Al13 cluster to the hydrodynamic radius for comparison with theoretical simulations, dynamic light scattering from literature, and previously published 1 H PFGSTE NMR studies of chelated Keggin clusters. This first-of-its-kind observation proves that 27 Al PFGSTE NMR diffusometry can probe symmetric Al environments in polynuclear clusters of greater molecular weight than previously considered.

3.
Anal Chem ; 93(2): 1068-1075, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33284581

RESUMO

Understanding the structure and composition of aluminate complexes in extremely alkaline systems such as Bayer liquors has received enormous attention due to their fundamental and industrial importance. However, obtaining direct molecular information of the underlying ion-ion interactions using traditional approaches such as NMR spectroscopy or Raman spectroscopy is challenging due to the weakness of these interactions and/or their complex overlapping spectral signatures. Here, we exploit in situ liquid secondary-ion mass spectrometry (SIMS) as a new approach and show how it enables new insights. In contrast with traditional techniques, using SIMS we succeeded in acquiring information on dominant ion clusters in these alkaline systems. In Na+/K+ mixed alkaline aluminate solutions, we clearly observe preferential formation of Na+-anion clusters over K+-anion clusters. Evaluation of these clusters by density functional theory (DFT) calculations shows that these structures are stable and that their relative bond energies are consistent with their observed SIMS signal intensity differences. This demonstrates a key advantage of in situ liquid SIMS for overcoming ambiguities obscuring important information in these systems on constituent molecular clusters defined by relatively weak ion-pair competition and ion-solvent interactions.

4.
Inorg Chem ; 60(13): 9820-9832, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34152139

RESUMO

Gibbsite, bayerite, and boehmite are important aluminum (oxy)hydroxide minerals in nature and have been widely deployed in various industrial applications. They are also major components in caustic nuclear wastes stored at various U.S. locations. Knowledge of their crystallization and phase transformation processes contributes to understanding their occurrence and could help optimize waste treatment processes. While it has been reported that partial conversion of bayerite and gibbsite to boehmite occurs in basic solutions at elevated temperatures, systematic studies of factors affecting the phase transformation as well as the underlying reaction mechanisms are nonexistent, particularly in highly alkaline solutions. We explored the effects of sodium hydroxide concentrations (0.1-3 M), reaction temperatures (60-100 °C), and aluminum concentrations (0.1-1 M) on the crystallization and transformation of these aluminum (oxy)hydroxides. Detailed structural and morphological characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) spectrometry revealed that these processes depend largely on the reaction temperature and the Al/OH- ratio. When 1 ≤ Al/OH- ≤ 2.5, the reactions favor formation of high-crystallinity precipitates, whereas at an Al/OH- ratio of ≥2.5 precipitation ceases unless the Al concentration is higher than 1 M. We identified pseudoboehmite, bayerite, and gibbsite as intermediate phases to bayerite, gibbsite and boehmite, respectively, all of which transform via dissolution-reprecipitation. Gibbsite transforms to boehmite in both acidic and weak caustic environments at temperatures above 80 °C. However, a "bar-shaped" gibbsite morphology dominates in highly caustic environments (3 M NaOH). The findings enable a robust basis for the selection of various solid phases by tuning the reaction conditions.

5.
Phys Chem Chem Phys ; 23(1): 112-122, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33305779

RESUMO

Nitrite (NO2-) is a prevalent nitrogen oxyanion in environmental and industrial processes, but its behavior in solution, including ion pair formation, is complex. This solution phase complexity impacts industries such as nuclear waste treatment, where NO2- significantly affects the solubility of other constituents present in sodium hydroxide (NaOH)-rich nuclear waste. This work provides molecular scale information into sodium nitrite (NaNO2) and NaOH ion-pairing processes to provide a physical basis for later development of thermodynamic models. Solubility isotherms of NaNO2 in aqueous mixtures with NaOH and total alkalinity were also measured. Spectroscopic characterization of these solutions utilized high-field nuclear magnetic resonance spectroscopy (NMR) and Raman spectroscopy, with additional solution structure detailed by X-ray total scattering pairwise distribution function analysis (X-ray PDF). Despite the NO2- deformation Raman band's insensitivity to added NaOH in saturated NaNO2 solutions, 23Na and 15N NMR studies indicated the Na+ and NO2- chemical environments change likely due to ion pairing. The ion pairing correlates with a decrease in diffusion coefficient of solution species as measured by pulsed field gradient 23Na and 1H NMR. Two-dimensional correlation analyses of the 2800-4000 cm-1 Raman region and X-ray PDF indicated that saturated NaNO2 and NaOH mixtures disrupt the hydrogen network of water into a new structure where the length of the OO correlations is contracted relative to the typical H2O structure. Beyond describing the solubility of NaNO2 in a multicomponent electrolyte mixture, these results also indicate that nitrite exhibits greater ion pairing in mixtures of concentrated NaNO2 and NaOH than in comparable solutions with only NaNO2.

6.
Inorg Chem ; 59(1): 891-899, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31858789

RESUMO

Gluconate is a multidentate ligand and its complexation with actinides has received increasing attention because of its existence in high level nuclear wastes as well as in nuclear waste repositories. In this work, the complexation of gluconate with Th(IV) was studied in deuterated water (D2O) by pD titrations and nuclear magnetic resonance (NMR) spectroscopy. In the pCD range 2.0-4.6, gluconate (GD4-) forms two 1:1 complexes with Th(IV), Th(GD3)2+ and Th(GD2)+. Their stability constants were determined to be log ß(D)101(-1) = 1.04 ± 0.12 for Th4+ + GD4- = Th(GD3)3+ + D+ and log ß(D)101(-2) = -(1.31 ± 0.09) for Th4+ + GD4- = Th(GD2)+ + 2D+ at I = 1.0 mol·L-1 NaClO4 and t = 22 °C. The coordination modes of these two complexes were also analyzed. In both complexes, the tridentate chelation forms through the binding of Th(IV) to one oxygen from the carboxylate group and two oxygens from α- and γ-hydroxyl groups. The difference is that in Th(GD2)+, both α- and γ-hydroxyl groups deprotonate, and in Th(GD3)2+, only the α-hydroxyl group deprotonates.

7.
Inorg Chem ; 59(10): 6857-6865, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32253907

RESUMO

Crystallization of Al3+-bearing solid phases from highly alkaline Na2O:Al2O3:H2O solutions commonly necessitates an Al3+ coordination change from tetrahedral to octahedral, but intermediate coordination states are often difficult to isolate. Here, a similar Al3+ coordination change process is examined during the solid-state recrystallization of monosodium aluminate hydrate (MSA) to nonasodium bis(hexahydroxyaluminate) trihydroxide hexahydrate (NSA) at ambient temperature. While the MSA structure contains solely oxolated tetrahedral Al3+, the NSA structure is a molecular aluminate salt solely based upon monomeric octahedral Al3+. Spontaneous recrystallization of MSA and excess sodium hydroxide hydrate into NSA over 3 days of reaction time was clearly evident in X-ray diffractograms and in Raman spectra. In situ single-pulse 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and 27Al multiple quantum (MQ) MAS NMR spectroscopy showed no evidence of intermediate aluminates, suggesting that transitional states, such as pentacoordinate Al3+, are short-lived and require spectroscopy with greater time resolution to detect. Such research is advancing upon a detailed mechanistic understanding of Al3+ coordination change mechanisms in these highly alkaline systems, with relevance to aluminum refining, corrosion sciences, and nuclear waste processing.

8.
Environ Sci Technol ; 54(10): 6375-6384, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298589

RESUMO

The incorporation of relatively minor impurity metals onto metal (oxy)hydroxides can strongly impact solubility. In complex highly alkaline multicomponent radioactive tank wastes such as those at the Hanford Nuclear Reservation, tests indicate that the surface area-normalized dissolution rate of boehmite (γ-AlOOH) nanomaterials is at least an order of magnitude lower than that predicted for the pure phase. Here, we examine the dissolution kinetics of boehmite coated by adsorbed Cr(III), which adheres at saturation coverages as sparse chemisorbed monolayer clusters. Using 40 nm boehmite nanoplates as a model system, temperature-dependent dissolution rates of pure versus Cr(III)-adsorbed boehmite showed that the initial rate for the latter is consistently several times lower, with an apparent activation energy 16 kJ·mol-1 higher. Although the surface coverage is only around 50%, solution analysis coupled to multimethod solids characterization reveal a phyicochemical armoring effect by adsorbed Cr(III) that substantially reduces the number of dissolution-active sites on particle surfaces. Such findings could help improve kinetics models of boehmite and/or metal ion adsorbed boehmite nanomaterials, ultimately providing a stronger foundation for the development of more robust complex radioactive liquid waste processing strategies.


Assuntos
Cáusticos , Nanopartículas , Adsorção , Hidróxido de Alumínio , Óxido de Alumínio , Solubilidade
9.
Phys Chem Chem Phys ; 22(42): 24677-24685, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33103701

RESUMO

The role of oligomeric aluminate species in the precipitation of aluminum (Al) phases such as gibbsite (α-Al(OH)3) from aqueous hydroxide solutions remains unclear and difficult to probe directly, despite its importance for developing accurate predictions of Al solubility in highly alkaline systems. Precipitation in this system entails a transition from predominantly tetrahedrally coordinated aluminate (Al(OH)4-) species in solution to octahedrally coordinated Al in gibbsite. Here we report a quantitative study of dissolved Al in the Al-KOH-H2O system using a combination of molecular spectroscopies. We establish a relationship between changes in 27Al NMR chemical shifts and the relative intensity of Raman vibrational bands, indicative of variations in the ensemble speciation of Al in solution, and the formation of unique contact ion pair interactions with the aluminate dimer, Al2O(OH)62-. A strong correlation between the extent of Al oligomerization and the amount of solvated Al was demonstrated by systematically varying the KOH : Al molar ratio. The concentration of dissolved oligomeric Al in solution also directly impacted the particle size and morphology of the precipitated gibbsite. High concentrations of dimeric Al2O(OH)62- yielded smaller and more numerous anhedral to subhedral gibbsite particles, while low concentrations yielded fewer and larger euhedral gibbsite platelets. The collective observations suggest a key role for the Al2O(OH)62- dimer in promoting gibbsite precipitation from solution, with the potassium ion-paired dimer catalyzing a more rapid transformation of Al from tetrahedral coordination in solution to octahedral coordination in gibbsite.

10.
Phys Chem Chem Phys ; 22(8): 4368-4378, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31850442

RESUMO

Despite widespread industrial importance, predicting metal solubilities in highly concentrated, multicomponent aqueous solutions is difficult due to poorly understood ion-ion and ion-solvent interactions. Aluminum hydroxide solid phase solubility in concentrated sodium hydroxide (NaOH) solutions is one such case, with major implications for ore refining, as well as processing of radioactive waste stored at U.S. Department of Energy legacy sites, such as the Hanford Site, Washington State. The solubility of gibbsite (α-Al(OH)3) is often not well predicted because other ions affect the activity of hydroxide (OH-) and aluminate (Al(OH)4-) anions. In the present study, we systematically examined the influence of key anions, nitrite (NO2-) and nitrate (NO3-), as sodium salts on the solubility of α-Al(OH)3 in NaOH solutions taking care to establish equilibrium from both under- and oversaturation. Rapid equilibration was enabled by use of a highly pure and crystalline synthetic nano-gibbsite of well-defined particle size and shape. Measured dissolved aluminum concentrations were compared with those predicted by an α-Al(OH)3 solubility model derived for simple Al(OH)4-/OH- systems. Specific anion effects were expressed as an enhancement factor (Alenhc) conveying the excess of dissolved aluminum. At 45 °C, NaNO2 and NaNO3-containing systems exhibited Alenhc values of 2.70 and 1.88, respectively, indicating significant enhancement. The solutions were examined by Raman and high-field 27Al NMR spectroscopy, indicating specific interactions including Al(OH)4--Na+ contact ion pairing and Al(OH)4--NO2-/NO3- ion-ion interactions. Dynamic evolution of the α-Al(OH)3 particles including growth and agglomeration was observed revealing the importance of dissolution/reprecipitation in establishing equilibrium. These studies indicate that incomplete ion hydration, as a result of the low water activity in these concentrated electrolytes, results in: (i) enhanced reactivity of the hydroxide ion with respect to α-Al(OH)3; (ii) increased concentrations of Al(OH)4- in solution; and (iii) stronger ion-ion interactions that act to stabilize the supersaturated solutions. This information on the mechanisms by which α-Al(OH)3 becomes supersaturated is essential for more energy-efficient aluminum processing technologies, including the treatment of millions of gallons of Al(OH)4--rich high-level radioactive waste.

11.
Inorg Chem ; 58(18): 12385-12394, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31486636

RESUMO

Gibbsite (α-Al(OH)3) transformation into layered double hydroxides, such as lithium aluminum hydroxide dihydrate (LiAl-LDH), is generally thought to occur by solid-state intercalation of Li+, in part because of the intrinsic structural similarities in the quasi-2D octahedral Al3+ frameworks of these two materials. However, in caustic environments where gibbsite solubility is high relative to LiAl-LDH, a dissolution-reprecipitation pathway is conceptually enabled, proceeding via precipitation of tetrahedral (Td) aluminate anions (Al(OH)4-) at concentrations held below 150 mM by rapid LiAl-LDH nucleation and growth. In this case, the relative importance of solid-state versus solution pathways is unknown because it requires in situ techniques that can distinguish Al3+ in solution and in the solid phase (gibbsite and LiAl-LDH), simultaneously. Here, we examine this transformation in partially deuterated LiOH solutions, using multinuclear, magic angle spinning, and high field nuclear magnetic resonance spectroscopy (27Al and 6Li MAS NMR), with supporting X-ray diffraction and scanning electron microscopy. In situ 27Al MAS NMR captured the emergence and decline of metastable aluminate ions, consistent with dissolution of gibbsite and formation of LiAl-LDH by precipitation. High field, ex situ 6Li NMR of the the progressively reacted solids resolved an Oh Li+ resonance that narrowed during the transformation. This is likely due to increasing local order in LiAl-LDH, correlating well with observations in high field, ex situ 27Al MAS NMR spectra, where a comparatively narrow LiAl-LDH Oh 27Al resonance emerges upfield of gibbsite resonances. No intermediate pentahedral Al3+ is resolvable. Quantification of aluminate ion concentrations suggests a prominent role for the solution pathway in this system, a finding that could help improve strategies for manipulating Al3+ concentrations in complex caustic waste streams, such as those being proposed to treat the high-level nuclear waste stored at the U.S. Department of Energy's Hanford Nuclear Reservation in Washington State, USA.

12.
Environ Sci Technol ; 53(18): 11043-11055, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31442378

RESUMO

The development of advanced functional nanomaterials for selective adsorption in complex chemical environments requires partner studies of binding mechanisms. Motivated by observations of selective Cr(III) adsorption on boehmite nanoplates (γ-AlOOH) in highly caustic multicomponent solutions of nuclear tank waste, here we unravel the adsorption mechanism in molecular detail. We examined Cr(III) adsorption to synthetic boehmite nanoplates in sodium hydroxide solutions up to 3 M, using a combination of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning/transmission electron microscopy (S/TEM), electron energy loss spectroscopy (EELS), high-resolution atomic force microscopy (HR-AFM), time-of-fight secondary ion mass spectrometry (ToF-SIMS), Cr K-edge X-ray absorption near edge structure (XANES)/extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR). Adsorption isotherms and kinetics were successfully fit to Langmuir and pseudo-second-order kinetic models, respectively, consistent with monotonic uptake of Cr(OH)4- monomers until saturation coverage of approximately half the aluminum surface site density. High resolution AFM revealed monolayer cluster self-assembly on the (010) basal surfaces with increasing Cr(III) loading, possessing a structural motif similar to guyanaite (ß-CrOOH), stabilized by corner-sharing Cr-O-Cr bonds and attached to the surface with edge-sharing Cr-O-Al bonds. The selective uptake appears related to short-range surface templating effects, with bridging metal connections likely enabled by hydroxyl anion ligand exchange reactions at the surface. Such a cluster formation mechanism, which stops short of more laterally extensive heteroepitaxy, could be a metal uptake discrimination mechanism more prevalent than currently recognized.


Assuntos
Hidróxido de Alumínio , Óxido de Alumínio , Adsorção , Cromo , Difração de Raios X
13.
Phys Chem Chem Phys ; 21(13): 6828-6838, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30620014

RESUMO

Extreme conditions of complex materials often lead to a manifold of local environments that challenge characterization and require new advances at the intersection of modern experimental and theoretical techniques. In this contribution, highly caustic and viscous aqueous NaOD solutions were characterized with a combination of X-ray and neutron radial distribution function (RDF) analyses, molecular dynamics simulations and sub-ensemble analysis. While this system has been the topic of some study, the current work expands upon the state of knowledge regarding the extent to which water is perturbed within this chemically extreme solution. Further, we introduce analyses that goes beyond merely identifying the different local environments (ion solvation and coordination environments) that are present, but toward understanding their relative contributions to the ensemble solution RDF. This integrated approach yields unique insight into the experimental sensitivity of RDFs to changes in local geometries, the composition of solvation environments about ions, and the challenge of experimentally differentiating the ensemble of all superimposed local environments-a feature of increasing importance within the extreme condition of high ionic strength.

14.
Anal Chem ; 90(4): 2548-2554, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29381059

RESUMO

Microfluidic devices are a growing field with significant potential for applications to small scale processing of solutions. Much like large scale processing, fast, reliable, and cost-effective means of monitoring streams during processing are needed. Here we apply a novel micro-Raman probe to the online monitoring of streams within a microfluidic device. For either macro- or microscale process monitoring via spectroscopic response, interfering or confounded bands can obfuscate results. By utilizing chemometric analysis, a form of multivariate analysis, species can be accurately quantified in solution despite the presence of overlapping or confounding spectroscopic bands. This is demonstrated on solutions of HNO3 and NaNO3 within microflow and microfluidic devices.

15.
Anal Chem ; 90(14): 8345-8353, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29733195

RESUMO

Microfluidic devices provide ideal environments to study solvent extraction. When droplets form and generate plug flow down the microfluidic channel, the device acts as a microreactor in which the kinetics of chemical reactions and interfacial transfer can be examined. Here, we present a methodology that combines chemometric analysis with online micro-Raman spectroscopy to monitor biphasic extractions within a microfluidic device. Among the many benefits of microreactors is the ability to maintain small sample volumes, which is especially important when studying solvent extraction in harsh environments, such as in separations related to the nuclear fuel cycle. In solvent extraction, the efficiency of the process depends on complex formation and rates of transfer in biphasic systems. Thus, it is important to understand the kinetic parameters in an extraction system to maintain a high efficiency and effectivity of the process. This monitoring provided concentration measurements in both organic and aqueous plugs as they were pumped through the microfluidic channel. The biphasic system studied was comprised of HNO3 as the aqueous phase and 30% (v/v) tributyl phosphate in n-dodecane comprised the organic phase, which simulated the plutonium uranium reduction extraction (PUREX) process. Using pre-equilibrated solutions (post extraction), the validity of the technique and methodology is illustrated. Following this validation, solutions that were not equilibrated were examined and the kinetics of interfacial mass transfer within the biphasic system were established. Kinetic results of extraction were compared to kinetics already determined on a macro scale to prove the efficacy of the technique.

16.
Inorg Chem ; 57(16): 10050-10058, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30067015

RESUMO

Competitive forces exist in multicomponent solutions, and within electrolytes they consist of both ion-solvent and solvent-solvent interactions. These can influence a myriad of processes, including ligand complexation. In the case of water/alcohol solutions, recent work revealed an interesting dilemma regarding the overall solution dynamics and organization as compared to solute-solvent interactions. This is particularly true for highly charged ions in solution, whose ion-solvent interactions were demonstrated to be highly sensitive to the composition of the immediate solvation environment. Faster solvent exchange should be observed about the ion, considering that second-order Møller-Plesset perturbation theory predicts an average decrease in ion-solvent dissociation energy when methanol enters the first solvation shell of Cm3+(aq). Yet the addition of methanol to water causes the dynamic features of the hydrogen-bond network of the entire solution to slow. The apparent competition between these contrary forces was examined using a combination of electronic structure calculations with both ab initio and classical molecular dynamics simulations, using binary water/methanol solutions and Cm3+ as a representative solute. This combination of theoretical methods predicts that, among the competitive effects of the solvent-solvent and ion-solvent interactions, the solution-phase dynamics imparted by the addition of methanol to water kinetically restricts the solvation exchange rates about Cm3+ in these binary solutions.

17.
Inorg Chem ; 57(19): 11864-11873, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30036042

RESUMO

Aluminum hydroxide (Al(OH)3, gibbsite) dissolution and precipitation processes in alkaline environments play a commanding role in aluminum refining and nuclear waste processing, yet mechanistic aspects underlying sluggish kinetics during crystallization have remained obscured due to a lack of in situ probes capable of isolating incipient ion pairs. At a molecular level Al is cycling between tetrahedral ( T d) coordination in solution to octahedral ( O h) in the solid. We explored dissolution of Al(OH)3 that was used to produce variably saturated aluminate (Al(OH)4-)-containing solutions under alkaline conditions (pH >13) with in situ 27Al magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy, and interrogated the results with ab initio molecular dynamics (AIMD) simulations complemented with chemical shift calculations. The collective results highlight the overall stability of the solvation structure for T d Al in the Al(OH)4- oxyanion as a function of both temperature and Al concentration. The observed chemical shift did not change significantly even when the Al concentration in solution became supersaturated upon cooling and limited precipitation of the octahedral Al(OH)3 phase occurred. However, subtle changes in Al(OH)4- speciation correlated with the dissolution/precipitation reaction were found. AIMD-informed chemical shift calculations indicate that measurable perturbations should begin when the Al(OH)4-···Na+ distance is less than 6 Å, increasing dramatically at shorter distances, coinciding with appreciable changes to the electrostatic interaction and reorganization of the Al(OH)4- solvation shell. The integrated findings thus suggest that, under conditions incipient to and concurrent with gibbsite crystallization, nominally expected contact ion pairs are insignificant and instead medium-range (4-6 Å) solvent-separated Al(OH)4-···Na+ pairs predominate. Moreover, the fact that these medium-range interactions bear directly on resulting gibbsite characteristics was demonstrated by detailed microscopic and X-ray diffraction analysis and by progressive changes in the fwhm of the O h resonance, as measured by in situ NMR. Sluggish gibbsite crystallization may arise from the activation energy associated with disrupting this robust medium-range ion pair interaction.

18.
Environ Sci Technol ; 52(2): 381-396, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29215277

RESUMO

This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.


Assuntos
Plutônio , Resíduos Radioativos , Minerais
19.
Analyst ; 142(23): 4468-4475, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29094733

RESUMO

Electrospray ionization mass spectrometry (ESI-MS) is a valuable and frequently used analytical technique across nearly all branches of chemistry, and has recently seen increasing use in the study of metal-ligand solution equilibria. Despite its prevalence, the method by which ESI produces gas-phase ions from solutions containing metal-ligand complexes is not fully understood, with recent reports showing significant changes to solution equilibria during ESI analysis. This study examines perturbations to the formation kinetics of metal-ligand complexes during the ESI process, showing how quickly new equilibria - reflective of the ionization process and not solution - can be established. Electrospray ionization mass spectrometry (ESI-MS) and ion mobility spectrometry (IMS) are used to examine the well studied Lu-DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) complexation reaction, with collision cross section modeling based on density functional theory (DFT) optimized structures used to aid in the interpretation of the ion mobility results. The electrospray process was found to significantly accelerate the formation kinetics, increasing the formation rate constant by more than an order of magnitude over its previously determined solution-phase value.

20.
Anal Chem ; 88(5): 2614-21, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823002

RESUMO

Electrospray ionization-mass spectrometry (ESI-MS) was tested for its use in monitoring spent nuclear fuel (SNF) constituents including U, Pu, dibutyl phosphate (DBP), and tributyl phosphate (TBP). Both positive and negative ion modes were used to evaluate the speciation of U and Pu with TBP and DBP. Furthermore, apparent stability constants were determined for U complexed to TBP and DBP. In positive ion mode, TBP produced a strong signal with and without complexation to U or Pu, but, in negative ion mode, no TBP, U-TBP, or Pu-TBP complexes were observed. Apparent stability constants were determined for [UO2(NO3)2(TBP)2], [UO2(NO3)2(H2O)(TBP)2], and [UO2(NO3)2(TBP)3]. In contrast DBP, U-DBP, and Pu-DBP complexes were observed in both positive and negative ion modes. Apparent stability constants were determined for the species [UO2(DBP)], [UO2(DBP)3], and [UO2(DBP)4]. Analyzing mixtures of U or Pu with TBP and DBP yielded the formation of ternary complexes whose stoichiometry was directly related to the ratio of TBP to DBP. The ESI-MS protocols used in this study will further demonstrate the utility of ESI-MS and its applicability to process control monitoring in SNF reprocessing facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA