Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(4): 895-912, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159142

RESUMO

Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34-5.1), 2.1 (0.49-5.1), and 1.5 (0.20-5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.


Assuntos
Fluorocarbonos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Fluorocarbonos/análise , Íons , Estudos Retrospectivos , Espectrometria de Massas em Tandem/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39165229

RESUMO

Mass spectrometry (MS) has dramatically transformed environmental protection by facilitating the precise quantification and identification of pollutants. This review charts the evolution of environmental chemistry, intertwining it with advancements in analytical chemistry and MS technologies. It specifically focuses on the role of MS in studying persistent organic pollutants like organochlorine pesticides, polychlorinated biphenyls (PCBs), brominated fire retardants (BFRs), and perfluoroalkyl and polyfluoroalkyl substances (PFAS), marking significant milestones and their implications. Notably, the adoption of gas chromatography with MS in the 1970s and liquid chromatography with MS in the late 1990s profoundly expanded scientists' ability to detect complex pollutant mixtures. Over the past 50 years, the proliferation of potential pollutants has surged, necessitating more sophisticated analysis techniques, such as high-resolution mass spectrometry-nontargeted analysis (HRMS-NTA) and suspect screening. While HRMS promises to enhance the characterization of new environmental pollutants, a significant shift in chemical management strategies remains imperative. Despite technological advances, MS alone is insufficient to mitigate the risks from the continuous emergence of novel chemicals, with many potentially already present in the environment and bioaccumulating in humans.

3.
Water Res ; 254: 121349, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401288

RESUMO

Foaming in aerated bioreactors at wastewater treatment plants (WWTPs) has been identified as an operational issue for decades. However, the affinity of per- and polyfluoroalkyl substances (PFAS) for air-liquid interfaces suggests that foam harvesting has the potential to become a sustainable method for PFAS removal from sewage. Aerated bioreactors' foams are considered three-phase systems, comprising air, aqueous and solid components, the latter consisting of activated sludge biomass. To achieve a comprehensive understanding of the capability of aerated bioreactors' foams to enrich PFAS, we analysed PFAS concentrations from WWTPs in both the solid and aqueous phases of the collapsed foams (foamate) and underlying bulk mixed liquors. Our findings show that PFAS enrichment occurs not only in the aqueous phase but also in the solid phase of the foamate. This suggests that previous field studies that only analysed the aqueous phase may have underestimated the capability of the aerated bioreactors' foams to enrich PFAS. Fractions of PFOA and PFOS sorbed to the solid phase of the foamate can be as high as 60 % and 95 %, respectively. Our findings highlight the importance of implementing effective foamate management strategies that consider both the aqueous and solid phases.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Biomassa , Esgotos , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 465: 133314, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147747

RESUMO

This study investigated the influence of beverage packaging materials on the presence of endocrine disrupting chemicals (EDCs) in plastic, glass, carton, aluminium, and tin canned non-alcoholic beverages. Results showed that 63 EDCs including perfluoroalkyl and polyfluoroalkyl substances (PFAS), bisphenols, parabens, benzophenone-type UV-filters, biocides, nitrophenols, and alkylphenols, were detected in 144/162 screened products. Detected ∑63EDC concentrations ranged from 1.3 to 19,600 ng/L. EDC concentrations were higher in beverages packaged in metal cans while lower or no levels were detected in glass, plastic, and carton packaged drinks. Bisphenol levels were higher on average in canned beverages compared to glass (p < 0.01) and plastic products (p < 0.05) produced by the same brand and manufacturer. Two structural isomers of bisphenol A (BPA) were identified in 19 beverages, constituting the first detection in foodstuffs. The calculated daily intake of detected EDCs showed that exposure to BPA from per capita beverage consumption of 364 mL/day are up to 2000-fold higher than the newly revised safety guideline for BPA recommended by the EFSA (European Food Safety Authority). Overall, these findings suggest that BPA exposure poses a potential health hazard for individuals who regularly consume non-alcoholic beverages packaged in aluminium or tin cans, particularly young children.


Assuntos
Disruptores Endócrinos , Criança , Humanos , Pré-Escolar , Alumínio , Estanho , Bebidas/análise , Medição de Risco , Compostos Benzidrílicos/análise
5.
ChemSusChem ; : e202401122, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150407

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are often considered the quintessential example of industrial chemical pollution - they are toxic and ubiquitous environmental contaminants that are extremely difficult to degrade. There has been a large research focus on the development of effective and renewable degradation technologies. In comparison to traditional pollutant degradation techniques, such as advanced oxidation processes and electrochemistry, degradation of PFAS using extracellular enzymes offers an eco-friendly solution as enzymes are biodegradable, recyclable and have low energy and chemical requirements. This review outlines the current understanding of extracellular enzymatic degradation of PFAS with a focus on reported results and proposed degradation mechanisms. More importantly, this review highlights limitations that hinder the application of enzymes for PFAS degradation and proposes critical future research that is needed to improve the applicability of this promising remediation strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA