Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893217

RESUMO

Beam position uncertainties along the beam trajectory arise from the accelerator, beamline, and scanning magnets (SMs). They can be monitored in real time, e.g., through strip ionization chambers (ICs), and treatments can be paused if needed. Delivery is more reliable and accurate if the beam position is projected from monitored nozzle parameters to the isocenter, allowing for accurate online corrections to be performed. Beam position projection algorithms are also used in post-delivery log file analyses. In this paper, we investigate the four potential algorithms that can be applied to all pencil beam scanning (PBS) nozzles. For some combinations of nozzle configurations and algorithms, however, the projection uses beam properties determined offline (e.g., through beam tuning or technical commissioning). The best algorithm minimizes either the total uncertainty (i.e., offline and online) or the total offline uncertainty in the projection. Four beam position algorithms are analyzed (A1-A4). Two nozzle lengths are used as examples: a large nozzle (1.5 m length) and a small nozzle (0.4 m length). Three nozzle configurations are considered: IC after SM, IC before SM, and ICs on both sides. Default uncertainties are selected for ion chamber measurements, nozzle entrance beam position and angle, and scanning magnet angle. The results for other uncertainties can be determined by scaling these results or repeating the error propagation. We show the propagation of errors from two locations and the SM angle to the isocenter for all the algorithms. The best choice of algorithm depends on the nozzle length and is A1 and A3 for the large and small nozzles, respectively. If the total offline uncertainty is to be minimized (a better choice if the offline uncertainty is not stable), the best choice of algorithm changes to A1 for the small nozzle for some hardware configurations. Reducing the nozzle length can help to reduce the gantry size and make proton therapy more accessible. This work is important for designing smaller nozzles and, consequently, smaller gantries. This work is also important for log file analyses.

2.
Pract Radiat Oncol ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967747

RESUMO

PURPOSE: This work aims at reviewing challenges and pitfalls in proton facility design related to equipment upgrade or replacement. Proton therapy was initially developed at research institutions in the 1950s which ushered in the use of hospital-based machines in 1990s. We are approaching an era where older commercial machines are reaching the end of their life and require replacement. The future widespread application of proton therapy depends on cost reduction; customized building design and installation are significant expenses. METHODS AND MATERIALS: We take this opportunity to discuss how commercial proton machines have been installed and how buildings housing the equipment have been designed. RESULTS: Data on dimensions and weights of the larger components of proton systems (cyclotron main magnet and gantries) are presented and innovative, non-gantry-based, patient positioning systems are discussed. CONCLUSIONS: We argue that careful consideration of the building design to include larger elevators, hoistways from above, wide corridors and access slopes to below grade installations, generic vault and treatment room layouts to accommodate multiple vendor's equipment, and modular system design can provide specific benefits during planning, installation, maintenance, and replacement phases of the project. Room temperature magnet coils can be constructed in a more modular manner: a potential configuration is presented. There is scope for constructing gantries and magnet yokes from smaller modular sub-units. These considerations would allow a hospital to replace a commercial machine at its end of life in a manner similar to a linac.

3.
Phys Med Biol ; 61(1): 400-12, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26674990

RESUMO

Delivery of pencil beam scanning (PBS) requires the on-line measurement of several beam parameters. If the measurement is outside of specified tolerances and a binary threshold algorithm is used, the beam will be paused. Given instrumentation and statistical noise such a system can lead to many pauses which could increase the treatment time. Statistical quality control methods are typically used on manufacturing lines to monitor a process and give early detection of a gradual problem and stop the process if a deviation is statistically significant. These methods can be used to develop a more intuitive algorithm for (PBS) delivery systems that is robust and safe and leads to decreased treatment times. The Exponentially Weighted Moving Average (EWMA) control scheme monitors deviations in beam properties which are averaged over a specified number of measurements with greater weight applied to the more recent ones. Simulation of an EWMA-style algorithm safely detected shifts in random and systematic delivery errors without false alarms. Binary and EWMA methods can be combined for improved reliability without sacrificing patient safety. In the EWMA method, the mean of a beam property can be related to systematic uncertainties and the standard deviation can be related to random uncertainties. This method allows one to have separate interlock levels for each type of uncertainty and to detect systematic trends.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Terapia com Prótons/efeitos adversos
4.
Phys Med Biol ; 57(21): N405-9, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23073269

RESUMO

Treatment planning databases for pencil beam scanning can be large, difficult to manage and problematic for quality assurance when they contain tabulated Bragg peaks at small range resolution. Smaller range resolution, in the absence of an accurate interpolation method, improves the accuracy in dose calculations. In this work, we derive an approximate scaling function to interpolate between tabulated Bragg peaks, and determine the accuracy of this interpolation technique and the minimum number of tabulated peaks in a treatment planning database. With the new interpolation technique, three tabulated mono-energetic Bragg peaks (N = 3) are a suitable lower limit for N to achieve interpolation accuracy better than ±1% of the maximum dose in pristine and spread out Bragg peaks for ranges between 6.8 and 32.1 cm of water.


Assuntos
Método de Monte Carlo , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Phys Med Biol ; 57(21): 6981-97, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23044713

RESUMO

The γ-index is used routinely to establish correspondence between two dose distributions. The definition of the γ-index can be written with a single equation but solving this equation at millions of points is computationally expensive, especially in three dimensions. Our goal is to extend the vector-equation method in Bakai et al (2003 Phys. Med. Biol.48 3543-53) to higher order for better accuracy and, as important, to determine the magnitude of accuracy in a higher order solution. We construct a numerical framework for calculating the γ-index in two and three dimensions and present an efficient method for calculating the γ-index with zeroth-, first- and second-order methods using tricubic spline interpolation. For an intensity-modulated radiation therapy example with 1.78 × 106 voxels, the zeroth-order, first-order, first-order iterations and semi-second-order methods calculate the three-dimensional γ-index in 1.5, 4.7, 34.7 and 35.6 s with 36.7%, 1.1%, 0.2% and 0.8% accuracy, respectively. The accuracy of linear interpolation with this example is 1.0%. We present efficient numerical methods for calculating the three-dimensional γ-index with tricubic spline interpolation. The first-order method with iterations is the most accurate and fastest choice of the numerical methods if the dose distributions may have large second-order gradients. Furthermore, the difference between iterations can be used to determine the accuracy of the method.


Assuntos
Modelos Teóricos , Doses de Radiação
6.
Int J Radiat Oncol Biol Phys ; 76(2): 624-30, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20117294

RESUMO

PURPOSE: We completed an implementation of pencil-beam scanning (PBS), a technology whereby a focused beam of protons, of variable intensity and energy, is scanned over a plane perpendicular to the beam axis and in depth. The aim of radiotherapy is to improve the target to healthy tissue dose differential. We illustrate how PBS achieves this aim in a patient with a bulky tumor. METHODS AND MATERIALS: Our first deployment of PBS uses "broad" pencil-beams ranging from 20 to 35 mm (full-width-half-maximum) over the range interval from 32 to 7 g/cm(2). Such beam-brushes offer a unique opportunity for treating bulky tumors. We present a case study of a large (4,295 cc clinical target volume) retroperitoneal sarcoma treated to 50.4 Gy relative biological effectiveness (RBE) (presurgery) using a course of photons and protons to the clinical target volume and a course of protons to the gross target volume. RESULTS: We describe our system and present the dosimetry for all courses and provide an interdosimetric comparison. DISCUSSION: The use of PBS for bulky targets reduces the complexity of treatment planning and delivery compared with collimated proton fields. In addition, PBS obviates, especially for cases as presented here, the significant cost incurred in the construction of field-specific hardware. PBS offers improved dose distributions, reduced treatment time, and reduced cost of treatment.


Assuntos
Algoritmos , Lipossarcoma Mixoide/radioterapia , Terapia com Prótons , Neoplasias Retroperitoneais/radioterapia , Humanos , Lipossarcoma Mixoide/patologia , Masculino , Pessoa de Meia-Idade , Radioterapia Conformacional/métodos , Neoplasias Retroperitoneais/patologia , Tecnologia Radiológica/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA