Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 733
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865437

RESUMO

Pyrimidine nucleotide monophosphate biosynthesis ends in the cytosol with uridine monophosphate (UMP). UMP phosphorylation to uridine diphosphate (UDP) by UMP KINASEs (UMKs) is required for the generation of all pyrimidine (deoxy)nucleoside triphosphates as building blocks for nucleic acids and central metabolites like UDP-glucose. The Arabidopsis (Arabidopsis thaliana) genome encodes five UMKs and three belong to the AMP KINASE (AMK)-like UMKs, which were characterized to elucidate their contribution to pyrimidine metabolism. Mitochondrial UMK2 and cytosolic UMK3 are evolutionarily conserved, whereas cytosolic UMK1 is specific to the Brassicaceae. In vitro, all UMKs can phosphorylate UMP, cytidine monophosphate (CMP) and deoxycytidine monophosphate (dCMP), but with different efficiencies. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-induced null mutants were generated for UMK1 and UMK2, but not for UMK3, since frameshift alleles were lethal for germline cells. However, a mutant with diminished UMK3 activity showing reduced growth was obtained. Metabolome analyses of germinating seeds and adult plants of single and higher-order mutants revealed that UMK3 plays an indispensable role in the biosynthesis of all pyrimidine (deoxy)nucleotides and UDP-sugars, while UMK2 is important for dCMP recycling that contributes to mitochondrial DNA stability. UMK1 is primarily involved in CMP recycling. We discuss the specific roles of these UMKs referring also to the regulation of pyrimidine nucleoside triphosphate synthesis.

2.
Hum Mol Genet ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704739

RESUMO

Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between disease-relevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.

3.
Hum Mol Genet ; 33(5): 400-425, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-37947217

RESUMO

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.


Assuntos
Reposicionamento de Medicamentos , Atrofia Muscular Espinal , Camundongos , Animais , Preparações Farmacêuticas , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica , Prednisolona/uso terapêutico , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
4.
Plant Cell ; 35(1): 510-528, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36342213

RESUMO

In nucleotide metabolism, nucleoside kinases recycle nucleosides into nucleotides-a process called nucleoside salvage. Nucleoside kinases for adenosine, uridine, and cytidine have been characterized from many organisms, but kinases for inosine and guanosine salvage are not yet known in eukaryotes and only a few such enzymes have been described from bacteria. Here we identified Arabidopsis thaliana PLASTID NUCLEOSIDE KINASE 1 (PNK1), an enzyme highly conserved in plants and green algae belonging to the Phosphofructokinase B family. We demonstrate that PNK1 from A. thaliana is located in plastids and catalyzes the phosphorylation of inosine, 5-aminoimidazole-4-carboxamide-1-ß-d-ribose (AICA ribonucleoside), and uridine but not guanosine in vitro, and is involved in inosine salvage in vivo. PNK1 mutation leads to increased flux into purine nucleotide catabolism and, especially in the context of defective uridine degradation, to over-accumulation of uridine and UTP as well as growth depression. The data suggest that PNK1 is involved in feedback regulation of purine nucleotide biosynthesis and possibly also pyrimidine nucleotide biosynthesis. We additionally report that cold stress leads to accumulation of purine nucleotides, probably by inducing nucleotide biosynthesis, but that this adjustment of nucleotide homeostasis to environmental conditions is not controlled by PNK1.


Assuntos
Inosina , Nucleosídeos , Inosina/metabolismo , Inosina/farmacologia , Nucleosídeos/metabolismo , Nucleotídeos , Nucleotídeos de Purina/genética , Nucleotídeos de Purina/metabolismo , Uridina
5.
Plant Cell ; 35(10): 3739-3756, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367221

RESUMO

The biological function of RNA can be modulated by base modifications. Here, we unveiled the occurrence of N4-acetylation of cytidine in plant RNA, including mRNA, by employing LC-MS/MS and acRIP-seq. We identified 325 acetylated transcripts from the leaves of 4-week-old Arabidopsis (Arabidopsis thaliana) plants and determined that 2 partially redundant N-ACETYLTRANSFERASEs FOR CYTIDINE IN RNA (ACYR1 and ACYR2), which are homologous to mammalian NAT10, are required for acetylating RNA in vivo. A double-null mutant was embryo lethal, while eliminating 3 of the 4 ACYR alleles led to defects in leaf development. These phenotypes could be traced back to the reduced acetylation and concomitant destabilization of the transcript of TOUGH, which is required for miRNA processing. These findings indicate that N4-acetylation of cytidine is a modulator of RNA function with a critical role in plant development and likely many other processes.


Assuntos
Arabidopsis , Citidina , Animais , RNA Mensageiro/genética , Acetilação , Citidina/genética , Citidina/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , RNA de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
6.
Plant Cell ; 34(10): 3790-3813, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35861422

RESUMO

Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , DNA de Cloroplastos/metabolismo , Desoxirribonucleotídeos/metabolismo , Desoxiuridina/metabolismo , Germinação , Metaboloma , Nucleotídeos/metabolismo , Fosforilação , Pirofosfatases/metabolismo , Plântula , Sementes/genética , Sementes/metabolismo , Timidina/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo
7.
Nature ; 575(7783): 500-504, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723261

RESUMO

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the ß-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.


Assuntos
Organismos Aquáticos/metabolismo , Ácido Aspártico/análogos & derivados , Glicolatos/metabolismo , Redes e Vias Metabólicas , Proteobactérias/metabolismo , Oxirredutases do Álcool/metabolismo , Aldeído Liases/metabolismo , Organismos Aquáticos/enzimologia , Ácido Aspártico/metabolismo , Biocatálise , Glioxilatos/metabolismo , Hidroliases/metabolismo , Cinética , Oxirredutases/metabolismo , Fitoplâncton/enzimologia , Fitoplâncton/metabolismo , Proteobactérias/enzimologia , Transaminases/metabolismo
8.
Nucleic Acids Res ; 51(14): 7451-7464, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37334828

RESUMO

5-Methylated cytosine is a frequent modification in eukaryotic RNA and DNA influencing mRNA stability and gene expression. Here we show that free 5-methylcytidine (5mC) and 5-methyl-2'-deoxycytidine are generated from nucleic acid turnover in Arabidopsis thaliana, and elucidate how these cytidines are degraded, which is unclear in eukaryotes. First CYTIDINE DEAMINASE produces 5-methyluridine (5mU) and thymidine which are subsequently hydrolyzed by NUCLEOSIDE HYDROLASE 1 (NSH1) to thymine and ribose or deoxyribose. Interestingly, far more thymine is generated from RNA than from DNA turnover, and most 5mU is directly released from RNA without a 5mC intermediate, since 5-methylated uridine (m5U) is an abundant RNA modification (m5U/U ∼1%) in Arabidopsis. We show that m5U is introduced mainly by tRNA-SPECIFIC METHYLTRANSFERASE 2A and 2B. Genetic disruption of 5mU degradation in the NSH1 mutant causes m5U to occur in mRNA and results in reduced seedling growth, which is aggravated by external 5mU supplementation, also leading to more m5U in all RNA species. Given the similarities between pyrimidine catabolism in plants, mammals and other eukaryotes, we hypothesize that the removal of 5mU is an important function of pyrimidine degradation in many organisms, which in plants serves to protect RNA from stochastic m5U modification.


Assuntos
Arabidopsis , RNA , Animais , Timina , Uridina/metabolismo , Pirimidinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , DNA , Mamíferos/genética
9.
J Biol Chem ; 299(6): 104741, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088133

RESUMO

Intracellular sugar compartmentation is critical in plant development and acclimation to challenging environmental conditions. Sugar transport proteins are present in plasma membranes and in membranes of organelles such as vacuoles, the Golgi apparatus, and plastids. However, there may exist other transport proteins with uncharacterized roles in sugar compartmentation. Here we report one such novel transporter of the Monosaccharide Transporter Family, the closest phylogenetic homolog of which is the chloroplast-localized glucose transporter pGlcT and that we therefore term plastidic glucose transporter 2 (pGlcT2). We show, using gene-complemented glucose uptake deficiency of an Escherichia coli ptsG/manXYZ mutant strain and biochemical characterization, that this protein specifically facilitates glucose transport, whereas other sugars do not serve as substrates. In addition, we demonstrate pGlcT2-GFP localized to the chloroplast envelope and that pGlcT2 is mainly produced in seedlings and in the rosette center of mature Arabidopsis plants. Therefore, in conjunction with molecular and metabolic data, we propose pGlcT2 acts as a glucose importer that can limit cytosolic glucose availability in developing pGlcT2-overexpressing seedlings. Finally, we show both overexpression and deletion of pGlcT2 resulted in impaired growth efficiency under long day and continuous light conditions, suggesting pGlcT2 contributes to a release of glucose derived from starch mobilization late in the light phase. Together, these data indicate the facilitator pGlcT2 changes the direction in which it transports glucose during plant development and suggest the activity of pGlcT2 must be controlled spatially and temporarily in order to prevent developmental defects during adaptation to periods of extended light.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Cloroplastos , Proteínas Facilitadoras de Transporte de Glucose , Aclimatação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Escherichia coli , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Luz , Filogenia
10.
Biochem Biophys Res Commun ; 693: 149376, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38104523

RESUMO

Peritoneal dialysis (PD) and prolonged exposure to PD fluids (PDF) induce peritoneal membrane (PM) fibrosis and hypervascularity, leading to functional PM degeneration. 2-deoxy-glucose (2-DG) has shown potential as PM antifibrotic by inhibiting hyper-glycolysis induced mesothelial-to-mesenchymal transition (MMT). We investigated whether administration of 2-DG with several PDF affects the permeability of mesothelial and endothelial barrier of the PM. The antifibrotic effect of 2-DG was confirmed by the gel contraction assay with embedded mesothelial (MeT-5A) or endothelial (EA.hy926) cells cultured in Dianeal® 2.5 % (CPDF), BicaVera® 2.3 % (BPDF), Balance® 2.3 % (LPDF) with/without 2-DG addition (0.2 mM), and qPCR for αSMA, CDH2 genes. Moreover, 2-DG effect was tested on the permeability of monolayers of mesothelial and endothelial cells by monitoring the transmembrane resistance (RTM), FITC-dextran (10, 70 kDa) diffusion and mRNA expression levels of CLDN-1 to -5, ZO1, SGLT1, and SGLT2 genes. Contractility of MeT-5A cells in CPDF/2-DG was decreased, accompanied by αSMA (0.17 ± 0.03) and CDH2 (2.92 ± 0.29) gene expression fold changes. Changes in αSMA, CDH2 were found in EA.hy926 cells, though αSMA also decreased under LPDF/2-DG incubation (0.42 ± 0.02). Overall, 2-DG mitigated the PDF-induced alterations in mesothelial and endothelial barrier function as shown by RTM, dextran transport and expression levels of the CLDN-1 to -5, ZO1, and SGLT2. Thus, supplementation of PDF with 2-DG not only reduces MMT but also improves functional permeability characteristics of the PM mesothelial and endothelial barrier.


Assuntos
Diálise Peritoneal , Fibrose Peritoneal , Humanos , Transportador 2 de Glucose-Sódio/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/metabolismo , Células Endoteliais , Diálise Peritoneal/efeitos adversos , Peritônio/patologia , Soluções para Diálise/metabolismo , Soluções para Diálise/farmacologia , Fibrose Peritoneal/metabolismo , Glucose/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas
11.
Plant Cell ; 33(2): 270-289, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793855

RESUMO

Detecting and quantifying low-abundance (deoxy)ribonucleotides and (deoxy)ribonucleosides in plants remains difficult; this is a major roadblock for the investigation of plant nucleotide (NT) metabolism. Here, we present a method that overcomes this limitation, allowing the detection of all deoxy- and ribonucleotides as well as the corresponding nucleosides from the same plant sample. The method is characterized by high sensitivity and robustness enabling the reproducible detection and absolute quantification of these metabolites even if they are of low abundance. Employing the new method, we analyzed Arabidopsis thaliana null mutants of CYTIDINE DEAMINASE, GUANOSINE DEAMINASE, and NUCLEOSIDE HYDROLASE 1, demonstrating that the deoxyribonucleotide (dNT) metabolism is intricately interwoven with the catabolism of ribonucleosides (rNs). In addition, we discovered a function of rN catabolic enzymes in the degradation of deoxyribonucleosides in vivo. We also determined the concentrations of dNTs in several mono- and dicotyledonous plants, a bryophyte, and three algae, revealing a correlation of GC to AT dNT ratios with genomic GC contents. This suggests a link between the genome and the metabolome previously discussed but not experimentally addressed. Together, these findings demonstrate the potential of this new method to provide insight into plant NT metabolism.


Assuntos
Arabidopsis/metabolismo , Briófitas/metabolismo , Eucariotos/metabolismo , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Arabidopsis/genética , Composição de Bases , Calibragem , Genoma de Planta , Mutação/genética , Folhas de Planta/metabolismo , Análise de Regressão , Reprodutibilidade dos Testes , Plântula/metabolismo
12.
Tumour Biol ; 46(s1): S219-S232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37840518

RESUMO

BACKGROUND: Despite successful response to first line therapy, patients with small-cell lung cancer (SCLC) often suffer from early relapses and disease progression. OBJECTIVE: To investigate the relevance of serum tumor markers for estimation of prognosis at several time points during the course of disease. METHODS: In a prospective, single-center study, serial assessments of progastrin-releasing peptide (ProGRP), neuron-specific enolase (NSE), cytokeratin-19 fragments (CYFRA 21-1) and carcino-embryogenic antigen (CEA) were performed during and after chemotherapy in 232 SCLC patients, and correlated with therapy response and overall survival (OS). RESULTS: ProGRP, NSE and CYFRA 21-1 levels decreased quickly after the first chemotherapy cycle and correlated well with the radiological response. Either as single markers or in combination they provided valuable prognostic information regarding OS at all timepoints investigated: prior to first-line therapy, after two treatment cycles in patients with successful response to first-line therapy, and prior to the start of second-line therapy. Furthermore, they were useful for continuous monitoring during and after therapy and often indicated progressive disease several months ahead of radiological changes. CONCLUSIONS: The results indicate the great potential of ProGRP, NSE and CYFRA 21-1 for estimating prognosis and monitoring of SCLC patients throughout the course of the disease.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Queratina-19 , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais , Prognóstico , Estudos Prospectivos , Fragmentos de Peptídeos , Antígenos de Neoplasias , Fosfopiruvato Hidratase/uso terapêutico , Antineoplásicos/uso terapêutico , Proteínas Recombinantes
13.
Tumour Biol ; 46(s1): S163-S175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37840516

RESUMO

BACKGROUND: Serum tumor markers (STM) may complement imaging and provide additional clinical information for patients with non-small cell lung cancer (NSCLC). OBJECTIVE: To determine whether STMs can predict outcomes in patients with stable disease (SD) after initial treatment. METHODS: This single-center, prospective, observational trial enrolled 395 patients with stage III/IV treatment-naïve NSCLC; of which 263 patients were included in this analysis. Computed Tomography (CT) scans were performed and STMs measured before and after initial treatment (two cycles of chemotherapy and/or an immune checkpoint inhibitor or tyrosine kinase inhibitor); analyses were based on CT and STM measurements obtained at first CT performed after cycle 2 only PFS and OS were analyzed by Kaplan-Meier curves and Cox-proportional hazard models. RESULTS: When patients with SD (n = 100) were split into high- and low-risk groups based on CYFRA 21-1, CEA and CA 125 measurements using an optimized cut-off, a 4-fold increase risk of progression or death was estimated for high- vs low-risk SD patients (PFS, HR 4.17; OS, 3.99; both p < 0.0001). Outcomes were similar between patients with high-risk SD or progressive disease (n = 35) (OS, HR 1.17) and between patients with low-risk SD or partial response (n = 128) (PFS, HR 0.98; OS, 1.14). CONCLUSIONS: STMs can provide further guidance in patients with indeterminate CT responses by separating them into high- and low-risk groups for future PFS and OS events.


Assuntos
Antígenos de Neoplasias , Carcinoma Pulmonar de Células não Pequenas , Queratina-19 , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Prognóstico , Estudos Prospectivos , Tomografia Computadorizada por Raios X
14.
Eur Radiol ; 34(7): 4379-4392, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38150075

RESUMO

OBJECTIVES: To quantify regional manifestations related to COPD as anomalies from a modeled distribution of normal-appearing lung on chest CT using a deep learning (DL) approach, and to assess its potential to predict disease severity. MATERIALS AND METHODS: Paired inspiratory/expiratory CT and clinical data from COPDGene and COSYCONET cohort studies were included. COPDGene data served as training/validation/test data sets (N = 3144/786/1310) and COSYCONET as external test set (N = 446). To differentiate low-risk (healthy/minimal disease, [GOLD 0]) from COPD patients (GOLD 1-4), the self-supervised DL model learned semantic information from 50 × 50 × 50 voxel samples from segmented intact lungs. An anomaly detection approach was trained to quantify lung abnormalities related to COPD, as regional deviations. Four supervised DL models were run for comparison. The clinical and radiological predictive power of the proposed anomaly score was assessed using linear mixed effects models (LMM). RESULTS: The proposed approach achieved an area under the curve of 84.3 ± 0.3 (p < 0.001) for COPDGene and 76.3 ± 0.6 (p < 0.001) for COSYCONET, outperforming supervised models even when including only inspiratory CT. Anomaly scores significantly improved fitting of LMM for predicting lung function, health status, and quantitative CT features (emphysema/air trapping; p < 0.001). Higher anomaly scores were significantly associated with exacerbations for both cohorts (p < 0.001) and greater dyspnea scores for COPDGene (p < 0.001). CONCLUSION: Quantifying heterogeneous COPD manifestations as anomaly offers advantages over supervised methods and was found to be predictive for lung function impairment and morphology deterioration. CLINICAL RELEVANCE STATEMENT: Using deep learning, lung manifestations of COPD can be identified as deviations from normal-appearing chest CT and attributed an anomaly score which is consistent with decreased pulmonary function, emphysema, and air trapping. KEY POINTS: • A self-supervised DL anomaly detection method discriminated low-risk individuals and COPD subjects, outperforming classic DL methods on two datasets (COPDGene AUC = 84.3%, COSYCONET AUC = 76.3%). • Our contrastive task exhibits robust performance even without the inclusion of expiratory images, while voxel-based methods demonstrate significant performance enhancement when incorporating expiratory images, in the COPDGene dataset. • Anomaly scores improved the fitting of linear mixed effects models in predicting clinical parameters and imaging alterations (p < 0.001) and were directly associated with clinical outcomes (p < 0.001).


Assuntos
Aprendizado Profundo , Doença Pulmonar Obstrutiva Crônica , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Idoso , Valor Preditivo dos Testes , Pulmão/diagnóstico por imagem , Estudos de Coortes
15.
Pediatr Nephrol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347283

RESUMO

Despite significant medical and technical improvements in the field of dialysis, the morbidity and mortality among patients with chronic kidney disease (CKD) stage 5 on dialysis remains extremely high. Hemodiafiltration (HDF), a dialysis method that combines the two main principles of hemodialysis (HD) and hemofiltration-diffusion and convection-has had a positive impact on survival when delivered with a high convective dose. Improved outcomes with HDF have been attributed to the following factors: HDF removes middle molecular weight uremic toxins including inflammatory cytokines, increases hemodynamic stability, and reduces inflammation and oxidative stress compared to conventional HD. Two randomized trials in adults have shown improved survival with HDF compared to high-flux HD. A large prospective cohort study in children has shown that HDF attenuated the progression of cardiovascular disease, improved bone turnover and growth, reduced inflammation, and improved blood pressure control compared to conventional HD. Importantly, children on HDF reported fewer headaches, dizziness, and cramps; had increased physical activity; and improved school attendance compared to those on HD. In this educational review, we discuss the technical aspects of HDF and results from pediatric studies, comparing outcomes on HDF vs. conventional HD. Convective volume, the cornerstone of treatment with HDF and a key determinant of outcomes in adult randomized trials, is discussed in detail, including the practical aspects of achieving an optimal convective volume.

16.
Pediatr Nephrol ; 39(3): 807-818, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37566114

RESUMO

BACKGROUND: This retrospective real-world study used data from two registries, International Pediatric Peritoneal Dialysis Network (IPPN) and International Pediatric Hemodialysis Network (IPHN), to characterize the efficacy and safety of continuous erythropoietin receptor activator (C.E.R.A.) in pediatric patients with chronic kidney disease (CKD) on peritoneal dialysis (PD) or hemodialysis (HD). METHODS: IPPN and IPHN collect prospective data (baseline and every 6 months) from pediatric PD and HD centers worldwide. Demographics, clinical characteristics, dialysis information, treatment, laboratory parameters, number and causes of hospitalization events, and deaths were extracted for patients on C.E.R.A. treatment (IPPN: 2007-2021; IPHN: 2013-2021). RESULTS: We analyzed 177 patients on PD (median age 10.6 years) and 52 patients on HD (median age 14.1 years) who had ≥ 1 observation while being treated with C.E.R.A. The median (interquartile range [IQR]) observation time under C.E.R.A. exposure was 6 (0-12.5) and 12 (0-18) months, respectively. Hemoglobin concentrations were stable over time; respective means (standard deviation) at last observation were 10.9 (1.7) g/dL and 10.4 (1.7) g/dL. Respective median (IQR) monthly C.E.R.A. doses at last observation were 3.5 (2.3-5.1) µg/kg, or 95 (62-145) µg/m2 and 2.1 (1.2-3.4) µg/kg, or 63 (40-98) µg/m2. Non-elective hospitalizations occurred in 102 (58%) PD and 32 (62%) HD patients. Seven deaths occurred (19.8 deaths per 1000 observation years). CONCLUSIONS: C.E.R.A. was associated with efficient maintenance of hemoglobin concentrations in pediatric patients with CKD on dialysis, and appeared to have a favorable safety profile. The current analysis revealed no safety signals.


Assuntos
Eritropoetina , Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Criança , Adolescente , Diálise Renal/efeitos adversos , Estudos Retrospectivos , Estudos Prospectivos , Hemoglobinas/análise , Resultado do Tratamento , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/tratamento farmacológico , Sistema de Registros , Falência Renal Crônica/terapia
17.
Artif Organs ; 48(5): 484-494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38151979

RESUMO

INTRODUCTION: Peritoneal dialysis (PD) is a life maintaining treatment in patients with end-stage renal disease. Its chronic application leads to peritoneal mesothelial layer denudation and fibrotic transformation along with vascular activation of inflammatory pathways. The impact of different PD fluids (PDF) on mesothelial and endothelial cell function and repair mechanisms are not comprehensively described. MATERIALS AND METHODS: Mesothelial (MeT-5A) and endothelial cells (EA.hy926) were cultured in 1:1 ratio with cell medium and different PDF (icodextrin-based, amino acid-based, and glucose-based). Cell adhesion, cell migration, and cell proliferation in 2D and spheroid formation and collagen gel contraction assays in 3D cell cultures were performed. RESULTS: Cell proliferation and cell-mediated gel contraction were both significantly decreased in all conditions. 3D spheroid formation was significantly reduced with icodextrin and amino acid PDF, but unchanged with glucose PDF. Adhesion was significantly increased by amino acid PDF in mesothelial cells and decreased by icodextrin and amino acid PDF in endothelial cells. Migration capacity was significantly decreased in mesothelial cells by all three PDF, while endothelial cells remained unaffected. CONCLUSIONS: In 3D phenotypes the effects of PDF are more uniform in both mesothelial and endothelial cells, mitigating spheroid formation and gel contraction. On the contrary, effects on 2D phenotypes are more uniform in the icodextrin and amino acid PDF as opposed to glucose ones and affect mesothelial cells more variably. 2D and 3D comparative assessments of PDF effects on the main peritoneal membrane cell barriers, the mesothelial and endothelial, could provide useful translational information for PD studies.


Assuntos
Células Endoteliais , Diálise Peritoneal , Humanos , Icodextrina/metabolismo , Icodextrina/farmacologia , Soluções para Diálise/efeitos adversos , Soluções para Diálise/metabolismo , Peritônio/metabolismo , Fenótipo , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Glucose/farmacologia , Glucose/metabolismo , Células Cultivadas , Células Epiteliais
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001608

RESUMO

Plants depend on the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) for CO2 fixation. However, especially in C3 plants, photosynthetic yield is reduced by formation of 2-phosphoglycolate, a toxic oxygenation product of Rubisco, which needs to be recycled in a high-flux-demanding metabolic process called photorespiration. Canonical photorespiration dissipates energy and causes carbon and nitrogen losses. Reducing photorespiration through carbon-concentrating mechanisms, such as C4 photosynthesis, or bypassing photorespiration through metabolic engineering is expected to improve plant growth and yield. The ß-hydroxyaspartate cycle (BHAC) is a recently described microbial pathway that converts glyoxylate, a metabolite of plant photorespiration, into oxaloacetate in a highly efficient carbon-, nitrogen-, and energy-conserving manner. Here, we engineered a functional BHAC in plant peroxisomes to create a photorespiratory bypass that is independent of 3-phosphoglycerate regeneration or decarboxylation of photorespiratory precursors. While efficient oxaloacetate conversion in Arabidopsis thaliana still masks the full potential of the BHAC, nitrogen conservation and accumulation of signature C4 metabolites demonstrate the proof of principle, opening the door to engineering a photorespiration-dependent synthetic carbon-concentrating mechanism in C3 plants.

19.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931501

RESUMO

Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.


Assuntos
Proteínas 14-3-3/genética , Proteínas de Caenorhabditis elegans/genética , Atrofia Muscular Espinal/genética , Degeneração Neural/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Quinases raf/genética , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Fibroblastos , Regulação da Expressão Gênica , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/genética , Medula Espinal
20.
Hum Mol Genet ; 29(24): 3935-3944, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33410474

RESUMO

Spinal muscular atrophy (SMA) is a devastating childhood disease primarily affecting lower motoneurons in the spinal cord. SMA is caused by the loss of functional survival of motoneuron (SMN) protein, leading to structural and functional alterations of the cytoskeleton in motoneurons and other cells. Loss of SMN results in impairments of microtubule architecture, but the underlying mechanisms are not completely understood. In this study, we mechanistically analyzed the effects of SMN deficiency on microtubules, demonstrating a reduced stability together with a reduction in alpha tubulin detyrosination. This was caused by increased levels of microtubule-associated protein 1B and tubulin tyrosine ligase, resulting in mitochondrial mislocalization in SMA. Our findings suggest that altered tubulin post-translational modifications and microtubule-associated proteins are involved in the pathomechanisms of SMA, such as an impaired axonal transport of mitochondria.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/patologia , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Mutação , Peptídeo Sintases/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Transporte Axonal , Transporte Biológico , Células Cultivadas , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mitocôndrias , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/etiologia , Atrofia Muscular Espinal/metabolismo , Peptídeo Sintases/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA