RESUMO
Ubiquitin domain-containing protein 1 (UBTD1) is highly evolutionary conserved and has been described to interact with E2 enzymes of the ubiquitin-proteasome system. However, its biological role and the functional significance of this interaction remain largely unknown. Here, we demonstrate that depletion of UBTD1 drastically affects the mechanical properties of epithelial cancer cells via RhoA activation and strongly promotes their aggressiveness. On a stiff matrix, UBTD1 expression is regulated by cell-cell contacts, and the protein is associated with ß-catenin at cell junctions. Yes-associated protein (YAP) is a major cell mechano-transducer, and we show that UBTD1 is associated with components of the YAP degradation complex. Interestingly, UBTD1 promotes the interaction of YAP with its E3 ubiquitin ligase ß-TrCP Consequently, in cancer cells, UBTD1 depletion decreases YAP ubiquitylation and triggers robust ROCK2-dependent YAP activation and downstream signaling. Data from lung and prostate cancer patients further corroborate the in cellulo results, confirming that low levels of UBTD1 are associated with poor patient survival, suggesting that biological functions of UBTD1 could be beneficial in limiting cancer progression.
Assuntos
Suscetibilidade a Doenças , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Ubiquitinas/metabolismo , Adesão Celular , Proteínas de Ciclo Celular/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Mecanotransdução Celular , Modelos Biológicos , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
UBTD1 is a previously uncharacterized ubiquitin-like (UbL) domain containing protein with high homology to the mitochondrial Dc-UbP/UBTD2 protein. Here we show that UBTD1 and UBTD2 belong to a family of proteins that is conserved through evolution and found in metazoa, funghi, and plants. To gain further insight into the function of UBTD1, we screened for interacting proteins. In a yeast-2-hybrid (Y2H) screen, we identified several proteins involved in the ubiquitylation pathway, including the UBE2D family of E2 ubiquitin conjugating enzymes. An affinity capture screen for UBTD1 interacting proteins in whole cell extracts also identified members of the UBE2D family. Biochemical characterization of recombinant UBTD1 and UBE2D demonstrated that the two proteins form a stable, stoichiometric complex that can be purified to near homogeneity. We discuss the implications of these findings in light of the ubiquitin proteasome system (UPS).
Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Humanos , Redes e Vias Metabólicas , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação , Ubiquitinas/classificação , Ubiquitinas/genéticaRESUMO
Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.
Assuntos
Glutamina , Serina , Rigidez Vascular , Animais , Glutamina/metabolismo , Serina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Humanos , Colágeno/metabolismo , RatosRESUMO
Biomolecular condensates regulate a wide range of cellular functions from signaling to RNA metabolism 1, 2 , yet, the physiologic conditions regulating their formation remain largely unexplored. Biomolecular condensate assembly is tightly regulated by the intracellular environment. Changes in the chemical or physical conditions inside cells can stimulate or inhibit condensate formation 3-5 . However, whether and how the external environment of cells can also regulate biomolecular condensation remain poorly understood. Increasing our understanding of these mechanisms is paramount as failure to control condensate formation and dynamics can lead to many diseases 6, 7 . Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo . We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol, but not glucose, concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacologic and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer - a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions. Altogether, we uncover molecular driving forces underlying protein phase transition and provide critical insights to understand the biological function and dysfunction of protein phase separation.
RESUMO
Increasing evidence points towards a causal link between exposure to persistent organic pollutants (POPs) with increased incidence and aggressivity of various cancers. Among these POPs, dioxin and PCB-153 are widely found in our environment and represent a significant source of contamination. Dioxin exposure has already been linked to cancer such as non-Hodgkin's lymphoma, but remains to be more extensively investigated in other cancers. Potential implications of dioxin and PCB-153 in prostate cancer progression spurred us to challenge both ex vivo and in vivo models with low doses of these POPs. We found that dioxin or PCB-153 exposure increased hallmarks of growth and metastasis of prostate cancer cells ex vivo and in grafted NOD-SCID mice. Exposure induced histopathological carcinoma-like patterns in the Ptenpc-/- mice. We identified up-regulation of Acetyl-CoA Acetyltransferase-1 (ACAT1) involved in ketone bodies pathway as a potential target. Mechanistically, genetic inhibition confirmed that ACAT1 mediated dioxin effect on cell migration. Using public prostate cancer datasets, we confirmed the deregulation of ACAT1 and associated gene encoded ketone bodies pathway enzymes such as OXCT1, BDH1 and HMGCL in advanced prostate cancer. To further explore this link between dioxin and ACAT1 deregulation, we analyzed a unique prostate-tumour tissue collection from the USA veterans exposed to agent orange, known to be highly contaminated by dioxin because of industrial production. We found that ACAT1 histoscore is significantly increased in exposed patients. Our studies reveal the implication of dioxin and PCB-153 to induce a prometastatic programme in prostate tumours and identify ACAT1 deregulation as a key event in this process.
Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Poluentes Orgânicos Persistentes , Dioxinas/toxicidade , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , AcetiltransferasesRESUMO
Obesity is a major public health concern at the origin of many pathologies, including cancers. Among them, the incidence of gastro-intestinal tract cancers is significantly increased, as well as the one of hormone-dependent cancers. The metabolic changes caused by overweight mainly with the development of adipose tissue (AT), insulin resistance and chronic inflammation induce hormonal and/or growth factor imbalances, which impact cell proliferation and differentiation. AT is now considered as the main internal source of endocrine disrupting chemicals (EDCs) representing a low level systemic chronic exposure. Some EDCs are non-metabolizable and can accumulate in AT for a long time. We are chronically exposed to low doses of EDCs able to interfere with the endocrine metabolism of the body. Importantly, several EDCs have been involved in the genesis of obesity affecting profoundly the physiology of AT. In parallel, EDCs have been implicated in the development of cancers, in particular hormone-dependent cancers (prostate, testis, breast, endometrium, thyroid). While it is now well established that AT secretes adipocytokines that promote tumor progression, it is less clear whether they can initiate cancer. Therefore, it is important to better understand the effects of EDCs, and to investigate the buffering effect of AT in the context of progression but also initiation of cancer cells using adequate models recommended to uncover and validate these mechanisms for humans. We will review and argument here the potential role of AT as a crosstalk between EDCs and hormone-dependent cancer development, and how to assess it.
Assuntos
Tecido Adiposo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Neoplasias/induzido quimicamente , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Humanos , Modelos BiológicosRESUMO
To adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that ubiquitin domain-containing protein 1 (UBTD1) plays a crucial role in both the epidermal growth factor receptor (EGFR) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through N-acylsphingosine amidohydrolase 1 (ASAH1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR. On the other hand, UBTD1, via the ubiquitination of Sequestosome 1 (SQSTM1/p62) by RNF26 and endolysosome positioning, participates in the lysosomal degradation of EGFR. The coordination of these two ubiquitin-dependent processes contributes to the control of the duration of the EGFR signal. Moreover, we showed that UBTD1 depletion exacerbates EGFR signaling and induces cell proliferation emphasizing a hitherto unknown function of UBTD1 in EGFR-driven human cell proliferation.
Assuntos
Ceramidas/metabolismo , Lisossomos/enzimologia , Neoplasias da Próstata/enzimologia , Ubiquitinas/metabolismo , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Lisossomos/genética , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteólise , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Ubiquitinação , Ubiquitinas/genéticaRESUMO
The G protein-coupled estrogen receptor (GPER), also known as GPR30, is a widely conserved 7-transmembrane-domain protein which has been identified as a novel 17ß-estradiol-binding protein that is structurally distinct from the classic oestrogen receptors (ERα and ERß). There are still conflicting data regarding the exact role and the natural ligand of GPER/GPR30 in reproductive tracts as both male and female knock-out mice are fertile and have no abnormalities of reproductive organs. Testicular germ cell cancers (TGCCs) are the most common malignancy in young males and the most frequent cause of death from solid tumors in this age group. Clinical and experimental studies suggested that estrogens participate in the physiological and pathological control of male germ cell proliferation. In human seminoma cell line, while 17ß-estradiol (E2) inhibits in vitro cell proliferation through an ERß-dependent mechanism, an impermeable E2 conjugate (E2 coupled to BSA), in vitro cell proliferation is stimulated by activating ERK1/2 and protein kinase A through a membrane GPCR that we further identified as GPER/GPR30. The same effect was observed with low but environmentally relevant doses of BPA, an estrogenic endocrine disrupting compound. Furthermore, GPER/GPR30 is specifically overexpressed in seminomas but not in non-seminomas and this overexpression is correlated with an ERß-downregulation. This GPER/GPR30 overexpression could be linked to some genetic variations, as single nucleotide polymorphisms, which was also reported in other hormone-dependent cancers. We will review here the implication of GPER/GPR30 in TGCCs pathophysiology and the arguments to consider GPER/GPR30 as a potential therapeutic target in humans.
Assuntos
Neoplasias Embrionárias de Células Germinativas/patologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Testiculares/patologia , Humanos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Transdução de Sinais , Neoplasias Testiculares/metabolismoRESUMO
Large prospective studies established a link between obesity and breast cancer (BC) development. Yet, the mechanisms underlying this association are not fully understood. Among the diverse adipocytokine secreted by hypertrophic adipose tissue, leptin is emerging as a key candidate molecule linking obesity and cancer, since it promotes proliferation and invasiveness of tumors. However, the potential implication of leptin on tumor escape mechanisms remains unknown. This study aims to explore the effect of leptin on tumor resistance to NK lysis and the underlying mechanism. We found that leptin promotes both BC resistance to NK92-mediated lysis and ß oxidation on MCF-7, by the up-regulation of a master regulator of mitochondrial biogenesis, the peroxisome proliferator activated receptor coactivator-1 α (PGC1A). Using adenoviral approaches, we show that acute elevation of PGC1A enhances the fatty acid oxidation pathway and decreases the susceptibility of BC cells to NK92-mediated lysis. Importantly, we identified the involvement of PGC1A and leptin in the regulation of hypoxia inducible factor-1 alpha (HIF1A) expression by tumor cells. We further demonstrate that basal BC cells MDA-MB-231 and BT-20 exhibit an increased PGC1A mRNA level and an enhanced oxidative phosphorylation activity; in comparison with luminal BC cells MCF7 and MDA-361, which are associated with more resistance NK92 lysis. Altogether, our results demonstrate for the first time how leptin could promote tumor resistance to immune attacks. Reagents blocking leptin or PGC1A activity might aid in developing new therapeutic strategies to limit tumor development in obese BC patients.
RESUMO
Rationale: Renal cell carcinoma (RCC) accounts for about 2% of all adult cancers, and clear cell RCC (ccRCC) is the most common RCC histologic subtype. A hallmark of ccRCC is the loss of the primary cilium, a cellular antenna that senses a wide variety of signals. Loss of this key organelle in ccRCC is associated with the loss of the von Hippel-Lindau protein (VHL). However, not all mechanisms of ciliopathy have been clearly elucidated. Methods: By using RCC4 renal cancer cells and patient samples, we examined the regulation of ciliogenesis via the presence or absence of the hypoxic form of the voltage-dependent anion channel (VDAC1-ΔC) and its impact on tumor aggressiveness. Three independent cohorts were analyzed. Cohort A was from PREDIR and included 12 patients with hereditary pVHL mutations and 22 sporadic patients presenting tumors with wild-type pVHL or mutated pVHL; Cohort B included tissue samples from 43 patients with non-metastatic ccRCC who had undergone surgery; and Cohort C was composed of 375 non-metastatic ccRCC tumor samples from The Cancer Genome Atlas (TCGA) and was used for validation. The presence of VDAC1-ΔC and legumain was determined by immunoblot. Transcriptional regulation of IFT20/GLI1 expression was evaluated by qPCR. Ciliogenesis was detected using both mouse anti-acetylated α-tubulin and rabbit polyclonal ARL13B antibodies for immunofluorescence. Results: Our study defines, for the first time, a group of ccRCC patients in which the hypoxia-cleaved form of VDAC1 (VDAC1-ΔC) induces resorption of the primary cilium in a Hypoxia-Inducible Factor-1 (HIF-1)-dependent manner. An additional novel group, in which the primary cilium is re-expressed or maintained, lacked VDAC1-ΔC yet maintained glycolysis, a signature of epithelial-mesenchymal transition (EMT) and more aggressive tumor progression, but was independent to VHL. Moreover, these patients were less sensitive to sunitinib, the first-line treatment for ccRCC, but were potentially suitable for immunotherapy, as indicated by the immunophenoscore and the presence of PDL1 expression. Conclusion: This study provides a new way to classify ccRCC patients and proposes potential therapeutic targets linked to metabolism and immunotherapy.
Assuntos
Carcinoma de Células Renais , Cílios , Neoplasias Renais , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Cílios/metabolismo , Cílios/patologia , Estudos de Coortes , Transição Epitelial-Mesenquimal , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Although tumorigenesis is dependent on the reprogramming of cellular metabolism, the metabolic pathways engaged in the formation of metastases remain largely unknown. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) plays a pleiotropic role in the control of cancer cell metabolism and has been associated with a good prognosis in prostate cancer. Here, we show that PGC1α represses the metastatic properties of prostate cancer cells via modulation of the polyamine biosynthesis pathway. Mechanistically, PGC1α inhibits the expression of c-MYC and ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme for polyamine synthesis. Analysis of in vivo metastases and clinical data from patients with prostate cancer support the proposition that the PGC1α/c-MYC/ODC1 axis regulates polyamine biosynthesis and prostate cancer aggressiveness. In conclusion, downregulation of PGC1α renders prostate cancer cells dependent on polyamine to promote metastasis. SIGNIFICANCE: These findings show that a major regulator of mitochondrial metabolism controls polyamine synthesis and prostate cancer aggressiveness, with potential applications in therapy and identification of new biomarkers.
Assuntos
Biomarcadores Tumorais/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Poliaminas/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Transportadores de Ácidos Dicarboxílicos/genética , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Metástase Neoplásica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Predictive biomarkers for advanced prostate cancer (PCa) are still missing. The sirtuin 7 (SIRT7) has been linked to tumorogenesis but its role in prostate cancer is poorly documented. To determine if SIRT7 can be a biomarker for aggressive prostate cancer and plays a role in PCa aggressiveness. We analyzed the expression of SIRT7 by immunohistochemistry in 57 patients comparing healthy with adjacent cancer tissue. SIRT7 levels were significantly elevated in tumors and its expression was positively associated with the grade. We also demonstrated that the knock down of SIRT7 decreased the migration of DU145 and PC3 cells (two androgen-independent prostate cancer cell lines) whereas the overexpression of the native protein but not the mutated form increased the cell migration and the invasion of the poorly aggressive prostate cancer cell line LNCaP. Finally, we also showed that SIRT7 overexpression induced the resistance to docetaxel. Our results demonstrate that SIRT7 promotes prostate cancer cell aggressiveness and chemoresistance and suggest that SIRT7 is a good predictive biomarker of PCa aggressiveness.
RESUMO
Mitochondrial integrity is critical for the regulation of cellular energy and apoptosis. Metformin is an energy disruptor targeting complex I of the respiratory chain. We demonstrate that metformin induces endoplasmic reticulum (ER) stress, calcium release from the ER and subsequent uptake of calcium into the mitochondria, thus leading to mitochondrial swelling. Metformin triggers the disorganization of the cristae and inner mitochondrial membrane in several cancer cells and tumors. Mechanistically, these alterations were found to be due to calcium entry into the mitochondria, because the swelling induced by metformin was reversed by the inhibition of mitochondrial calcium uniporter (MCU). We also demonstrated that metformin inhibits the opening of mPTP and induces mitochondrial biogenesis. Altogether, the inhibition of mPTP and the increase in mitochondrial biogenesis may account for the poor pro-apoptotic effect of metformin in cancer cells.
Assuntos
Cálcio/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metformina/farmacologia , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Modelos Biológicos , Biogênese de OrganelasRESUMO
A phenotypic feature of aging is skeletal muscle wasting. It is characterized by a loss of muscle mass and strength. Age-related loss of muscle mass occurs through a reduction in the rate of protein synthesis, an increase in protein degradation or a combination of both. However, the underlying mechanism is still poorly understood. To test the hypothesis that the ubiquitin-proteasome pathway contributes to this phenomenon, we studied MuRF1 and atrogin-1 expression in Tibialis Anterior muscle of aged rats. These two E3 ligases are considered as sensitive markers of muscle protein degradation by the ubiquitin-proteasome system. Our results revealed that, in skeletal muscle of aged rats, the decline in muscle mass is accompanied by an increase in the level of oxidized proteins and ubiquitin conjugates (90%) whereas the functionality of the proteasome remains constant compared to young rats. Furthermore, the level of both MuRF1 and atrogin-1 mRNA is markedly up-regulated in aged muscle (respectively x2 and x2.5). Taken together these data argue for the involvement of the ubiquitin-proteasome pathway in sarcopenia of fast-twitch muscle, in particular through increased expression of MuRF1 and atrogin-1. Moreover, we observed a decrease in the IGF-1/Akt signalling pathways and elevated level of TNFalpha mRNA in aged rat muscle. Therefore, IGF-1/Akt and TNFalpha represent potential mediators implicated in the regulation of MuRF1 and atrogin-1 genes during aging.
Assuntos
Envelhecimento , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Proteínas Ligases SKP Culina F-Box/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Animais , Carbono/química , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas com Motivo Tripartido , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Changes in the proteasome system, a dominant actor in protein degradation in eukaryotic cells, have been documented in a large number of physiological and pathological conditions. We investigated the influence of monounsaturated or polyunsaturated fatty acids (PUFAs) supplemented diets on the proteasome system, in rat skeletal muscles. Thirty rats were randomly assigned to three groups. The control group received only a standard diet. The monounsaturated fatty acid (MUFA) enriched diet group was fed with 3% sunflower oil in addition to standard food, and the polyunsaturated fatty acid supplemented diet group received 9% Maxepa) in addition to the standard diet. We analyzed muscle proteasome activities and content. Monounsaturated or PUFAs supplemented diets given for 8 weeks induced a significant increase in proteasome activities. With the polyunsaturated fatty acid enriched diet, the chymotrypsin-like and peptidylglutamylpeptide hydrolase activities increased by 45% in soleus and extensor digitorum longus (EDL), and by 90% in the gastrocnemius medialis (GM) muscle. Trypsin-like activity of the proteasome increased by 250% in soleus, EDL and GM. This increase in proteasome activities was associated with a concomitant enhancement in the muscle content of proteasome. Proteasome activities and level were less stimulated with a monounsaturated fatty acid supplemented diet. This study provides evidence that a monounsaturated or polyunsaturated fatty acid supplemented diet may regulate muscle proteasomes. Unsaturated fatty acids are particularly prone to free radical attack. Thus, we suggest that alterations in muscle proteasome may result from monounsaturated and polyunsaturated fatty acid-induced peroxidation, in order to eliminate damaged proteins.
Assuntos
Cisteína Endopeptidases/metabolismo , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Western Blotting , Ácidos Graxos Monoinsaturados/administração & dosagem , Peroxidação de Lipídeos , Complexo de Endopeptidases do Proteassoma , Ratos , Ratos WistarRESUMO
The ATP-ubiquitin-dependent pathway in eukaryotes is a complex system, which plays an essential role in selective protein degradation. The functional diversity of this system must be matched to the specific protein metabolism related to the physiology of each cell types. The aim of our work was to study the expression of different components of the proteasome-dependent pathway in various rat tissues. Therefore we quantified the 20S proteasome and the 19S and 11S regulators by Western blot, and measured the expression of the mRNAs of certain subunits, which are markers of these components. We compared the peptidase activities of the purified 20S proteasomes, and also mapped its components by 2D electrophoresis. Our results show that the components of the ATP-ubiquitin-dependent pathway vary considerably both in abundance and activity from one tissue to another. This diversity allows the cells to respond appropriately to tissue-specific protein metabolism in the rat.
Assuntos
Cisteína Endopeptidases/metabolismo , Perfilação da Expressão Gênica , Complexos Multienzimáticos/metabolismo , Ubiquitina/metabolismo , Animais , Western Blotting , Composição Corporal , Cisteína Endopeptidases/genética , Eletroforese em Gel Bidimensional , Masculino , Complexos Multienzimáticos/genética , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Ubiquitina/genéticaRESUMO
Muscle atrophy is a debilitating process associated with many chronic wasting diseases, like cancer, diabetes, sepsis, and renal failure. Rapid loss of muscle mass occurs mainly through the activation of protein breakdown by the ubiquitin proteasome pathway. Foxo3a transcription factor is critical for muscle atrophy, since it activates the expression of ubiquitin ligase Atrogin-1. In several models of atrophy, inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway induces nuclear import of Foxo3a through an Akt-dependent process. This study aimed to identify signaling pathways involved in the control of Foxo3a nuclear translocation in muscle cells. We observed that after nuclear import of Foxo3a by PI3K/Akt pathway inhibition, activation of stress-activated protein kinase (SAPK) pathways induced nuclear export of Foxo3a through CRM1. This mechanism involved the c-Jun NH(2)-terminal kinase (JNK) signaling pathway and was independent of Akt. Likewise, we showed that inhibition of p38 induced a massive nuclear relocalization of Foxo3a. Our results thus suggest that SAPKs are involved in the control of Foxo3a nucleocytoplasmic translocation in C2C12 cells. Moreover, activation of SAPKs decreases the expression of Atrogin-1, and stable C2C12 myotubes, in which the p38 pathway is constitutively activated, present partial protection against atrophy.
Assuntos
Fatores de Transcrição Forkhead/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células Musculares/metabolismo , Atrofia Muscular/metabolismo , Animais , Antracenos/farmacologia , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromonas/farmacologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/efeitos dos fármacos , Humanos , Isoquinolinas/farmacologia , Carioferinas/efeitos dos fármacos , Carioferinas/metabolismo , MAP Quinase Quinase 3/efeitos dos fármacos , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 4/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Células Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/metabolismo , Atrofia Muscular/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Ligases SKP Culina F-Box/efeitos dos fármacos , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína Exportina 1RESUMO
Endurance training and/or a fish oil supplemented diet affect cytoplasmic fatty acid binding protein (FABP(c)) content in rat skeletal muscles and heart. After 8 weeks of swimming, trained rats exhibited higher FABP(c) content in the extensor digitorum longus (EDL) and in the gastrocnemius than did control rats (30%). The FABP(c) increase was associated with an increase of citrate synthase activity (85% and 93%, respectively, in the two muscles), whereas lactate dehydrogenase activity decreased significantly. In contrast, in the soleus and in the heart we did not observe any effect of exercise either on FABP(c) or on the metabolic profile. Therefore, increasing oxidative capacities of muscle by exercise resulted in a concomitant increase of the FABP(c) content. Giving a polyunsaturated fatty acid (omega-3) supplemented diet for eight weeks induced a large rise of the FABP(c) in EDL (300%), gastrocnemius (250%), soleus (50%) and heart (15%) without a concurrent accumulation of intramuscular triglycerides or modification of the citrate synthase activity, suggesting that polyunsaturated fatty acids may increase FABP(c) content by up-regulating fatty acid metabolism genes via peroxisome proliferator-activated receptor alpha activation. Endurance trained rats fed with an omega-3 diet had similar FABP(c) content in the gastrocnemius muscle when compared to sedentary omega-3 fed rats, whereas an additive effect of exercise and diet was observed in the EDL. The FABP(c) in the soleus and in the heart of rats fed with omega-3 supplements remained constant whether rats performed exercise or not. As a result, both exercise and omega-3-enriched diet influenced FABP(c) content in muscle. These two physiological treatments presumably acted on FABP(c) content by increasing fatty acid flux within the cell.