RESUMO
Hirschsprung disease (HSCR, aganglionic megacolon) represents the main genetic cause of functional intestinal obstruction with an incidence of 1/5000 live births. This developmental disorder is a neurocristopathy and is characterised by the absence of the enteric ganglia along a variable length of the intestine. In the last decades, the development of surgical approaches has importantly decreased mortality and morbidity which allowed the emergence of familial cases. Isolated HSCR appears to be a non-Mendelian malformation with low, sex-dependent penetrance, and variable expression according to the length of the aganglionic segment. While all Mendelian modes of inheritance have been described in syndromic HSCR, isolated HSCR stands as a model for genetic disorders with complex patterns of inheritance. The tyrosine kinase receptor RET is the major gene with both rare coding sequence mutations and/or a frequent variant located in an enhancer element predisposing to the disease. Hitherto, 10 genes and five loci have been found to be involved in HSCR development.
Assuntos
Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Aberrações Cromossômicas , Feminino , Doença de Hirschsprung/epidemiologia , Humanos , Obstrução Intestinal/genética , Masculino , Biologia Molecular , Mutação , Receptores Proteína Tirosina Quinases/genética , SíndromeRESUMO
Hirschsprung disease (HSCR) stands as a model for genetic dissection of complex diseases. In this model, a major gene, RET, is involved in most if not all cases of isolated (i.e., nonsyndromic) HSCR, in conjunction with other autosomal susceptibility loci under a multiplicative model. HSCR susceptibility alleles can harbor either heterozygous coding sequence mutations or, more frequently, a polymorphism within intron 1, leading to a hypomorphic RET allele. On the other hand, about 30% of HSCR are syndromic. Hitherto, the disease causing gene has been identified for eight Mendelian syndromes with HSCR: congenital central hypoventilation (CCHS), Mowat-Wilson (MWS), Bardet-Biedl (BBS), Shah-Waardenburg (WS4), cartilage-hair-hypoplasia (CHH), Smith-Lemli-Opitz (SLO), Goldberg-Sprintzsen (GSS), and hydrocephalus due to congenital stenosis of the aqueduct of sylvius (HSAS). According to the HSCR syndrome, the penetrance of HSCR trait varies from 5 to 70%. Trisomy 21 (T21) also predisposes to HSCR. We were able to collect a series of 393 patients affected by CCHS (n = 173), WS4 (n = 24), BBS (n = 51), MWS (n = 71), T21 (n = 46), and mental retardation (MR) with HSCR (n = 28). For each syndrome, we studied the RET locus in two subgroups of patients; i.e., with or without HSCR. We genotyped the RET locus in 393 patients among whom 195 had HSCR, and compared the distribution of alleles and genotypes within the two groups for each syndrome. RET acts as a modifier gene for the HSCR phenotype in patients with CCHS, BBS, and Down syndrome, but not in patients with MWS and WS4. The frequent, low penetrant, predisposing allele of the RET gene can be regarded as a risk factor for the HSCR phenotype in CCHS, BBS, and Down syndrome, while its role is not significant in MWS and WS4. These data highlight the pivotal role of the RET gene in both isolated and syndromic HSCR.
Assuntos
Alelos , Epistasia Genética , Doença de Hirschsprung/genética , Proteínas Proto-Oncogênicas c-ret/genética , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Penetrância , SíndromeRESUMO
BACKGROUND: The acronym CHARGE refers to a non-random cluster of malformations including coloboma, heart malformation, choanal atresia, retardation of growth and/or development, genital anomalies, and ear anomalies. This set of multiple congenital anomalies is frequent, despite rare patients with normal intelligence, and prognosis remains poor. Recently, CHD7 gene mutations have been identified in CHARGE patients; however, the function of CHD7 during development remains unknown. METHODS: We studied a series of 10 antenatal cases in whom the diagnosis of CHARGE syndrome was suspected, considering that a careful pathological description would shed light on the CHD7 function during development. CHD7 sequence analysis and in situ hybridisation were employed. RESULTS: The diagnosis of CHARGE syndrome was confirmed in all 10 fetuses by the identification of a CHD7 heterozygous truncating mutation. Interestingly, arhinencephaly and semi-circular canal agenesis were two constant features which are not included in formal diagnostic criteria so far. In situ hybridisation analysis of the CHD7 gene during early human development emphasised the role of CHD7 in the development of the central nervous system, internal ear, and neural crest of pharyngeal arches, and more generally showed a good correlation between specific CHD7 expression pattern and the developmental anomalies observed in CHARGE syndrome. CONCLUSIONS: These results allowed us to further refine the phenotypic spectrum of developmental anomalies resulting from CHD7 dysfunction.