Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NEJM AI ; 1(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38586278

RESUMO

BACKGROUND: Machine learning (ML) may cost-effectively direct health care by identifying patients most likely to benefit from preventative interventions to avoid negative and expensive outcomes. System for High-Intensity Evaluation During Radiation Therapy (SHIELD-RT; NCT04277650) was a single-institution, randomized controlled study in which electronic health record-based ML accurately identified patients at high risk for acute care (emergency visit or hospitalization) during radiotherapy (RT) and targeted them for supplemental clinical evaluations. This ML-directed intervention resulted in decreased acute care utilization. Given the limited prospective data showing the ability of ML to direct interventions cost-efficiently, an economic analysis was performed. METHODS: A post hoc economic analysis was conducted of SHIELD-RT that included RT courses from January 7, 2019, to June 30, 2019. ML-identified high-risk courses (≥10% risk of acute care during RT) were randomized to receive standard of care weekly clinical evaluations with ad hoc supplemental evaluations per clinician discretion versus mandatory twice-weekly evaluations. The primary outcome was difference in mean total medical costs during and 15 days after RT. Acute care costs were obtained via institutional cost accounting. Physician and intervention costs were estimated via Medicare and Medicaid data. Negative binomial regression was used to estimate cost outcomes after adjustment for patient and disease factors. RESULTS: A total of 311 high-risk RT courses among 305 patients were randomized to the standard (n=157) or the intervention (n=154) group. Unadjusted mean intervention group supplemental visit costs were $155 per course (95% confidence interval, $142 to $168). The intervention group had fewer acute care visits per course (standard, 0.47; intervention, 0.31; P=0.04). Total mean adjusted costs were $3110 per course for the standard group and $1494 for the intervention group (difference in means, $1616 [95% confidence interval, $1450 to $1783]; P=0.03). CONCLUSIONS: In this economic analysis of a randomized controlled, health care ML study, mandatory supplemental evaluations for ML-identified high-risk patients were associated with both reduced total medical costs and improved clinical outcomes. Further study is needed to determine whether economic results are generalizable. (Funded in part by The Duke Endowment, The Conquer Cancer Foundation, the Duke Department of Radiation Oncology, and the National Cancer Institute of the National Institutes of Health [R01CA277782]; ClinicalTrials.gov number, NCT04277650.).

2.
J Clin Oncol ; 38(31): 3652-3661, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886536

RESUMO

PURPOSE: Patients undergoing outpatient radiotherapy (RT) or chemoradiation (CRT) frequently require acute care (emergency department evaluation or hospitalization). Machine learning (ML) may guide interventions to reduce this risk. There are limited prospective studies investigating the clinical impact of ML in health care. The objective of this study was to determine whether ML can identify high-risk patients and direct mandatory twice-weekly clinical evaluation to reduce acute care visits during treatment. PATIENTS AND METHODS: During this single-institution randomized quality improvement study (ClinicalTrials.gov identifier: NCT04277650), 963 outpatient adult courses of RT and CRT started from January 7 to June 30, 2019, were evaluated by an ML algorithm. Among these, 311 courses identified by ML as high risk (> 10% risk of acute care during treatment) were randomized to standard once-weekly clinical evaluation (n = 157) or mandatory twice-weekly evaluation (n = 154). Both arms allowed additional evaluations on the basis of clinician discretion. The primary end point was the rate of acute care visits during RT. Model performance was evaluated using receiver operating characteristic area under the curve (AUC) and decile calibration plots. RESULTS: Twice-weekly evaluation reduced rates of acute care during treatment from 22.3% to 12.3% (difference, -10.0%; 95% CI, -18.3 to -1.6; relative risk, 0.556; 95% CI, 0.332 to 0.924; P = .02). Low-risk patients had a 2.7% acute care rate. Model discrimination was good in high- and low-risk patients undergoing standard once-weekly evaluation (AUC, 0.851). CONCLUSION: In this prospective randomized study, ML accurately triaged patients undergoing RT and CRT, directing clinical management with reduced acute care rates versus standard of care. This prospective study demonstrates the potential benefit of ML in health care and offers opportunities to enhance care quality and reduce health care costs.


Assuntos
Serviço Hospitalar de Emergência/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Aprendizado de Máquina , Modelos Teóricos , Neoplasias/terapia , Idoso , Assistência Ambulatorial , Área Sob a Curva , Quimiorradioterapia , Feminino , Previsões/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Melhoria de Qualidade , Curva ROC , Radioterapia , Medição de Risco/métodos , Padrão de Cuidado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA