Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mamm Genome ; 34(3): 418-436, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460664

RESUMO

Current genome sequencing technologies have made it possible to generate highly contiguous genome assemblies for non-model animal species. Despite advances in genome assembly methods, there is still room for improvement in the delineation of specific gene features in the genomes. Here we present genome visualization and annotation tools to support seven livestock species (bovine, chicken, goat, horse, pig, sheep, and water buffalo), available in a new resource called AgAnimalGenomes. In addition to supporting the manual refinement of gene models, these browsers provide visualization tracks for hundreds of RNAseq experiments, as well as data generated by the Functional Annotation of Animal Genomes (FAANG) Consortium. For species with predicted gene sets from both Ensembl and RefSeq, the browsers provide special tracks showing the thousands of protein-coding genes that disagree across the two gene sources, serving as a valuable resource to alert researchers to gene model issues that may affect data interpretation. We describe the data and search methods available in the new genome browsers and how to use the provided tools to edit and create new gene models.


Assuntos
Animais Domésticos , Bases de Dados Genéticas , Animais , Bovinos , Suínos , Cavalos/genética , Ovinos/genética , Animais Domésticos/genética , Anotação de Sequência Molecular , Genoma/genética , Mapeamento Cromossômico , Cabras/genética
2.
Mol Biol Evol ; 38(6): 2260-2272, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33528505

RESUMO

In the course of evolution, pecorans (i.e., higher ruminants) developed a remarkable diversity of osseous cranial appendages, collectively referred to as "headgear," which likely share the same origin and genetic basis. However, the nature and function of the genetic determinants underlying their number and position remain elusive. Jacob and other rare populations of sheep and goats are characterized by polyceraty, the presence of more than two horns. Here, we characterize distinct POLYCERATE alleles in each species, both associated with defective HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn bud primordia, likely following the abnormal extension of an initial morphogenetic field. These results highlight the key role played by this gene in headgear patterning and illustrate the evolutionary co-option of a gene involved in the early development of bilateria to properly fix the position and number of these distinctive organs of Bovidae.


Assuntos
Evolução Biológica , Cabras/genética , Proteínas de Homeodomínio/genética , Cornos , Ovinos/genética , Animais , Biometria , Regulação da Expressão Gênica no Desenvolvimento , Cabras/embriologia , Cabras/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Transgênicos , Mutação , Ovinos/embriologia , Ovinos/metabolismo
3.
BMC Genomics ; 19(1): 283, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29690867

RESUMO

BACKGROUND: In food animal agriculture, there is a need to identify the mechanisms that can improve the efficiency of muscle growth and protein accretion. Callipyge sheep provide excellent machinery since the up-regulation of DLK1 and RTL1 results in extreme postnatal muscle hypertrophy in distinct muscles. The aim of this study is to distinguish the genes that directly respond to DLK1 and RTL1 signaling from the genes that change as the result of muscle specific effects. RESULTS: The quantitative PCR results indicated that DLK1 expression was significantly increased in hypertrophied muscles but not in non-hypertrophied muscles. However, RTL1 was up-regulated in both hypertrophied and non-hypertrophied muscles. Five genes, including PARK7, DNTTIP1, SLC22A3, METTL21E and PDE4D, were consistently co-expressed with DLK1, and therefore were possible transcriptional target genes responding to DLK1 signaling. Treatment of myoblast and myotubes with DLK1 protein induced an average of 1.6-fold and 1.4-fold increase in Dnttip1 and Pde4d expression respectively. Myh4 expression was significantly elevated in DLK1-treated myotubes, whereas the expression of Mettl21e was significantly increased in the DLK1-treated myoblasts but reduced in DLK1-treated myotubes. DLK1 treatment had no impact on Park7 expression. In addition, Park7 and Dnttip1 increased Myh4 and decreased Myh7 promoter activity, resemble to the effects of Dlk1. In contrast, expression of Mettl21e increased Myh7 and decreased Myh4 luciferase activity. CONCLUSION: The study provided additional supports that RTL1 alone was insufficient to induce muscle hypertrophy and concluded that DLK1 was likely the primary effector of the hypertrophy phenotype. The results also suggested that DNTTIP1 and PDE4D were secondary effector genes responding to DLK1 signaling resulting in muscle fiber switch and muscular hypertrophy in callipyge lamb.


Assuntos
Proteínas de Membrana/genética , Animais , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipertrofia , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Ovinos/genética , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
BMC Genomics ; 17: 441, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277319

RESUMO

BACKGROUND: Copy number variants (CNVs) are a type of polymorphism found to underlie phenotypic variation, both in humans and livestock. Most surveys of CNV in livestock have been conducted in the cattle genome, and often utilise only a single approach for the detection of copy number differences. Here we performed a study of CNV in sheep, using multiple methods to identify and characterise copy number changes. Comprehensive information from small pedigrees (trios) was collected using multiple platforms (array CGH, SNP chip and whole genome sequence data), with these data then analysed via multiple approaches to identify and verify CNVs. RESULTS: In total, 3,488 autosomal CNV regions (CNVRs) were identified in this study, which substantially builds on an initial survey of the sheep genome that identified 135 CNVRs. The average length of the identified CNVRs was 19 kb (range of 1 kb to 3.6 Mb), with shorter CNVRs being more frequent than longer CNVRs. The total length of all CNVRs was 67.6Mbps, which equates to 2.7 % of the sheep autosomes. For individuals this value ranged from 0.24 to 0.55 %, and the majority of CNVRs were identified in single animals. Rather than being uniformly distributed throughout the genome, CNVRs tended to be clustered. Application of three independent approaches for CNVR detection facilitated a comparison of validation rates. CNVs identified on the Roche-NimbleGen 2.1M CGH array generally had low validation rates with lower density arrays, while whole genome sequence data had the highest validation rate (>60 %). CONCLUSIONS: This study represents the first comprehensive survey of the distribution, prevalence and characteristics of CNVR in sheep. Multiple approaches were used to detect CNV regions and it appears that the best method for verifying CNVR on a large scale involves using a combination of detection methodologies. The characteristics of the 3,488 autosomal CNV regions identified in this study are comparable to other CNV regions reported in the literature and provide a valuable and sizeable addition to the small subset of published sheep CNVs.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Genômica , Ovinos/genética , Animais , Cromossomos de Mamíferos , Hibridização Genômica Comparativa , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Anim Genet ; 47(2): 258-62, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26767438

RESUMO

Phenotypic variability in horn characteristics, such as their size, number and shape, offers the opportunity to elucidate the molecular basis of horn development. The objective of this study was to map the genetic determinant controlling the production of four horns in two breeds, Jacob sheep and Navajo-Churro, and examine whether an eyelid abnormality occurring in the same populations is related. Genome-wide association mapping was performed using 125 animals from the two breeds that contain two- and four-horned individuals. A case-control design analysis of 570 712 SNPs genotyped with the ovine HD SNP Beadchip revealed a strong association signal on sheep chromosome 2. The 10 most strongly associated SNPs were all located in a region spanning Mb positions 131.9-132.6, indicating the genetic architecture underpinning the production of four horns is likely to involve a single gene. The closest genes to the most strongly associated marker (OAR2_132568092) were MTX2 and the HOXD cluster, located approximately 93 Kb and 251 Kb upstream respectively. The occurrence of an eyelid malformation across both breeds was restricted to polled animals and those carrying more than two horns. This suggests the eyelid abnormality may be associated with departures from the normal developmental production of two-horned animals and that the two conditions are developmentally linked. This study demonstrated the presence of separate loci responsible for the polled and four-horned phenotypes in sheep and advanced our understanding of the complexity that underpins horn morphology in ruminants.


Assuntos
Estudos de Associação Genética , Loci Gênicos , Cornos/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Animais , Cruzamento , Estudos de Casos e Controles , Mapeamento Cromossômico , Pálpebras/anormalidades , Feminino , Marcadores Genéticos , Genótipo , Masculino , Fenótipo
6.
BMC Genomics ; 15: 944, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25359221

RESUMO

BACKGROUND: Polar overdominance at the ovine callipyge (CLPG) locus involves the post-transcriptional trans-inhibition of DLK1 in skeletal muscle of CLPG/CLPG sheep. The abundant maternally expressed microRNAs (miRNAs) mapping to the imprinted DLK1-GTL2 domain are prime candidate mediators of this trans-effect. RESULTS: We have tested the affinity of 121 miRNAs processed from this locus for DLK1 by co-transfecting COS1 cells with a vector expressing the full-length ovine DLK1 with corresponding mimic miRNAs. None of the tested miRNAs was able to down regulate DLK1 to the extent observed in vivo. CONCLUSIONS: This suggests that other factors, with or without these miRNAs, are involved in mediating the observed trans-effect.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Ovinos/genética , Animais , Células COS , Chlorocebus aethiops , Impressão Genômica , Transfecção
7.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38712074

RESUMO

Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. We assembled complete and gapless telomere to telomere (T2T) Y chromosomes for these species. The pseudo-autosomal regions were similar in length, but the total chromosome size was substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity was accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 18MYA. The centromeres also differed dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosome have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.

8.
Nat Genet ; 56(8): 1566-1573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103649

RESUMO

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.


Assuntos
Ruminantes , Telômero , Telômero/genética , Animais , Ruminantes/genética , Evolução Molecular , Genoma/genética , Seleção Genética , Filogenia , Diploide
9.
Genome Res ; 20(12): 1651-62, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20944086

RESUMO

The callipyge phenotype is a monogenic muscular hypertrophy that is only expressed in heterozygous sheep receiving the CLPG mutation from their sire. The wild-type phenotype of CLPG/CLPG animals is thought to result from translational inhibition of paternally expressed DLK1 transcripts by maternally expressed miRNAs. To identify the miRNA responsible for this trans effect, we used high-throughput sequencing to exhaustively catalog miRNAs expressed in skeletal muscle of sheep of the four CLPG genotypes. We have identified 747 miRNA species of which 110 map to the DLK1-GTL2 or callipyge domain. We demonstrate that the latter are imprinted and preferentially expressed from the maternal allele. We show that the CLPG mutation affects their level of expression in cis (∼3.2-fold increase) as well as in trans (∼1.8-fold increase). In CLPG/CLPG animals, miRNAs from the DLK1-GTL2 domain account for ∼20% of miRNAs in skeletal muscle. We show that the CLPG genotype affects the levels of A-to-I editing of at least five pri-miRNAs of the DLK1-GTL2 domain, but that levels of editing of mature miRNAs are always minor. We present suggestive evidence that the miRNAs from the domain target the ORF of DLK1, thereby causing the trans inhibition underlying polar overdominance. We highlight the limitations of high-throughput sequencing for digital gene expression profiling as a result of biased and inconsistent amplification of specific miRNAs.


Assuntos
MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/veterinária , Mutação/genética , Fenótipo , Doenças dos Ovinos/genética , Elementos Silenciadores Transcricionais/genética , Animais , Sequência de Bases , Genótipo , MicroRNAs/genética , Dados de Sequência Molecular , Doenças Musculares/genética , Análise de Sequência de DNA/métodos , Ovinos
10.
Front Genet ; 14: 1297444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288162

RESUMO

Ovine footrot is an infectious disease with important contributions from Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is characterized by separation of the hoof from underlying tissue, and this causes severe lameness that negatively impacts animal wellbeing, growth, and profitability. Large economic losses result from lost production as well as treatment costs, and improved genetic tools to address footrot are a valuable long-term goal. Prior genetic studies had examined European wool sheep, but hair sheep breeds such as Katahdin and Blackbelly have been reported to have increased resistance to footrot, as well as to intestinal parasites. Thus, footrot condition scores were collected from 251 U.S. sheep including Katahdin, Blackbelly, and European-influenced crossbred sheep with direct and imputed genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density. Genome-wide association was performed with a mixed model accounting for farm and principal components derived from animal genotypes, as well as a random term for the genomic relationship matrix. We identified three genome-wide significant associations, including SNPs in or near GBP6 and TCHH. We also identified 33 additional associated SNPs with genome-wide suggestive evidence, including a cluster of 6 SNPs in a peak near the genome-wide significance threshold located near the glutamine transporter gene SLC38A1. These findings suggest genetic susceptibility to footrot may be influenced by genes involved in divergent biological processes such as immune responses, nutrient availability, and hoof growth and integrity. This is the first genome-wide study to investigate susceptibility to footrot by including hair sheep and also the first study of any kind to identify multiple genome-wide significant associations with ovine footrot. These results provide a foundation for developing genetic tests for marker-assisted selection to improve resistance to ovine footrot once additional steps like fine mapping and validation are complete.

11.
Front Genet ; 13: 1060882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685812

RESUMO

As whole genome sequence (WGS) data sets have become abundant and widely available, so has the need for variant detection and scoring. The aim of this study was to compare the accuracy of commonly used variant calling programs, Freebayes and GATK HaplotypeCaller (GATK-HC), and to use U.S. sheep WGS data sets to identify novel breed-associated SNPs. Sequence data from 145 sheep consisting of 14 U.S. breeds were filtered and biallelic single nucleotide polymorphisms (SNPs) were retained for genotyping analyses. Genotypes from both programs were compared to each other and to genotypes from bead arrays. The SNPs from WGS were compared to the bead array data with breed heterozygosity, principal component analysis and identifying breed associated SNPs to analyze genetic diversity. The average sequence read depth was 2.78 reads greater with 6.11% more SNPs being identified in Freebayes compared to GATK-HC. The genotype concordance of the variant callers to bead array data was 96.0% and 95.5% for Freebayes and GATK-HC, respectively. Genotyping with WGS identified 10.5 million SNPs from all 145 sheep. This resulted in an 8% increase in measured heterozygosity and greater breed separation in the principal component analysis compared to the bead array analysis. There were 1,849 SNPs identified in only the Romanov sheep where all 10 rams were homozygous for one allele and the remaining 135 sheep from 13 breeds were homozygous for the opposite allele. Both variant calling programs had greater than 95% concordance of SNPs with bead array data, and either was suitably accurate for ovine WGS data sets. The use of WGS SNPs improved the resolution of PCA analysis and was critical for identifying Romanov breed-associated SNPs. Subsets of such SNPs could be used to estimate germplasm composition in animals without pedigree information.

12.
Gigascience ; 112022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134925

RESUMO

BACKGROUND: The domestic sheep (Ovis aries) is an important agricultural species raised for meat, wool, and milk across the world. A high-quality reference genome for this species enhances the ability to discover genetic mechanisms influencing biological traits. Furthermore, a high-quality reference genome allows for precise functional annotation of gene regulatory elements. The rapid advances in genome assembly algorithms and emergence of sequencing technologies with increasingly long reads provide the opportunity for an improved de novo assembly of the sheep reference genome. FINDINGS: Short-read Illumina (55× coverage), long-read Pacific Biosciences (75× coverage), and Hi-C data from this ewe retrieved from public databases were combined with an additional 50× coverage of Oxford Nanopore data and assembled with canu v1.9. The assembled contigs were scaffolded using Hi-C data with Salsa v2.2, gaps filled with PBsuitev15.8.24, and polished with Nanopolish v0.12.5. After duplicate contig removal with PurgeDups v1.0.1, chromosomes were oriented and polished with 2 rounds of a pipeline that consisted of freebayes v1.3.1 to call variants, Merfin to validate them, and BCFtools to generate the consensus fasta. The ARS-UI_Ramb_v2.0 assembly is 2.63 Gb in length and has improved continuity (contig NG50 of 43.18 Mb), with a 19- and 38-fold decrease in the number of scaffolds compared with Oar_rambouillet_v1.0 and Oar_v4.0. ARS-UI_Ramb_v2.0 has greater per-base accuracy and fewer insertions and deletions identified from mapped RNA sequence than previous assemblies. CONCLUSIONS: The ARS-UI_Ramb_v2.0 assembly is a substantial improvement in contiguity that will optimize the functional annotation of the sheep genome and facilitate improved mapping accuracy of genetic variant and expression data for traits in sheep.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Cromossomos , Anotação de Sequência Molecular , Ovinos/genética , Sequenciamento Completo do Genoma
13.
Front Genet ; 12: 628849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093640

RESUMO

The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the broader livestock species FAANG initiative, aims to identify and characterize gene regulatory elements in domestic sheep. Regulatory element annotation is essential for identifying genetic variants that affect health and production traits in this important agricultural species, as greater than 90% of variants underlying genetic effects are estimated to lie outside of transcribed regions. Histone modifications that distinguish active or repressed chromatin states, CTCF binding, and DNA methylation were used to characterize regulatory elements in liver, spleen, and cerebellum tissues from four yearling sheep. Chromatin immunoprecipitation with sequencing (ChIP-seq) was performed for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF. Nine chromatin states including active promoters, active enhancers, poised enhancers, repressed enhancers, and insulators were characterized in each tissue using ChromHMM. Whole-genome bisulfite sequencing (WGBS) was performed to determine the complement of whole-genome DNA methylation with the ChIP-seq data. Hypermethylated and hypomethylated regions were identified across tissues, and these locations were compared with chromatin states to better distinguish and validate regulatory elements in these tissues. Interestingly, chromatin states with the poised enhancer mark H3K4me1 in the spleen and cerebellum and CTCF in the liver displayed the greatest number of hypermethylated sites. Not surprisingly, active enhancers in the liver and spleen, and promoters in the cerebellum, displayed the greatest number of hypomethylated sites. Overall, chromatin states defined by histone marks and CTCF occupied approximately 22% of the genome in all three tissues. Furthermore, the liver and spleen displayed in common the greatest percent of active promoter (65%) and active enhancer (81%) states, and the liver and cerebellum displayed in common the greatest percent of poised enhancer (53%), repressed enhancer (68%), hypermethylated sites (75%), and hypomethylated sites (73%). In addition, both known and de novo CTCF-binding motifs were identified in all three tissues, with the highest number of unique motifs identified in the cerebellum. In summary, this study has identified the regulatory regions of genes in three tissues that play key roles in defining health and economically important traits and has set the precedent for the characterization of regulatory elements in ovine tissues using the Rambouillet reference genome.

14.
BMC Genomics ; 11: 378, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20546621

RESUMO

BACKGROUND: The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes. RESULTS: Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development) and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development) and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal--postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune response while the latter principally involved functions associated with transcriptional regulation of metabolic processes. CONCLUSIONS: It is concluded that during late skeletal muscle development there are substantial and coordinated changes in the transcription of a large number of genes many of which are probably triggered by increased estrogen levels. These changes probably underpin the adaption of muscle to new physiological demands in the postnatal environment.


Assuntos
Redes Reguladoras de Genes/genética , Músculo Esquelético/metabolismo , Ovinos/embriologia , Ovinos/genética , Animais , Sequência Conservada , Cães , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Oxirredução , Ratos , Sequências Reguladoras de Ácido Nucleico/genética , Ovinos/crescimento & desenvolvimento , Fatores de Tempo , Transcrição Gênica
15.
Chromosome Res ; 17(4): 497-506, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19575301

RESUMO

A comprehensive physical map was generated for Ovis aries chromosome X (OARX) based on a cytogenomics approach. DNA probes were prepared from bacterial artificial chromosome (BAC) clones from the CHORI-243 sheep library and were assigned to G-banded metaphase spreads via fluorescence in-situ hybridization (FISH). A total of 22 BACs gave a single hybridization signal to the X chromosome and were assigned out of 32 tested. The positioned BACs contained 16 genes and a microsatellite marker which represent new cytogenetically mapped loci in the sheep genome. The gene and microsatellite loci serve to anchor between the existing radiation hybrid (RH) and virtual sheep genome (VSG) maps to the cytogenetic OARX map, whilst the BACs themselves also serve as anchors between the VSG and the cytogenetic maps. An additional 17 links between the RH and cytogenetic maps are provided by BAC end sequence (BES) derived markers that have also been positioned on the RH map. Comparison of the map orders for the cytogenetic, RH, and virtual maps reveals that the orders for the cytogenetic and RH maps are most similar, with only one locus, represented by BAC CH243-330E18, mapping to relatively different positions. Several discrepancies, including an inverted segment are found when comparing both the cytogenetic and RH maps with the virtual map. These discrepancies highlight the value of using physical mapping methods to inform the process of future in silico map construction. A detailed comparative analysis of sheep, human, and cattle mapping data allowed the construction of a comparative map that confirms and expands the knowledge about evolutionary conservation and break points between the X chromosomes of the three mammalian species.


Assuntos
Cromossomos Humanos X/genética , Mapeamento Físico do Cromossomo , Mapeamento de Híbridos Radioativos/veterinária , Ovinos/genética , Cromossomo X/genética , Animais , Sequência de Bases , Bovinos , Bandeamento Cromossômico , Quebra Cromossômica , Cromossomos Artificiais Bacterianos/genética , Corantes/metabolismo , Simulação por Computador , Sondas de DNA , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Marcadores Genéticos/genética , Genoma , Humanos , Hibridização in Situ Fluorescente , Metáfase , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Propídio/metabolismo , Mapeamento de Híbridos Radioativos/métodos , Análise de Sequência de DNA , Especificidade da Espécie
16.
Front Genet ; 11: 580580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193703

RESUMO

The overall aim of the Ovine FAANG project is to provide a comprehensive annotation of the new highly contiguous sheep reference genome sequence (Oar rambouillet v1.0). Mapping of transcription start sites (TSS) is a key first step in understanding transcript regulation and diversity. Using 56 tissue samples collected from the reference ewe Benz2616, we have performed a global analysis of TSS and TSS-Enhancer clusters using Cap Analysis Gene Expression (CAGE) sequencing. CAGE measures RNA expression by 5' cap-trapping and has been specifically designed to allow the characterization of TSS within promoters to single-nucleotide resolution. We have adapted an analysis pipeline that uses TagDust2 for clean-up and trimming, Bowtie2 for mapping, CAGEfightR for clustering, and the Integrative Genomics Viewer (IGV) for visualization. Mapping of CAGE tags indicated that the expression levels of CAGE tag clusters varied across tissues. Expression profiles across tissues were validated using corresponding polyA+ mRNA-Seq data from the same samples. After removal of CAGE tags with <10 read counts, 39.3% of TSS overlapped with 5' ends of 31,113 transcripts that had been previously annotated by NCBI (out of a total of 56,308 from the NCBI annotation). For 25,195 of the transcripts, previously annotated by NCBI, no TSS meeting stringent criteria were identified. A further 14.7% of TSS mapped to within 50 bp of annotated promoter regions. Intersecting these predicted TSS regions with annotated promoter regions (±50 bp) revealed 46% of the predicted TSS were "novel" and previously un-annotated. Using whole-genome bisulfite sequencing data from the same tissues, we were able to determine that a proportion of these "novel" TSS were hypo-methylated (32.2%) indicating that they are likely to be reproducible rather than "noise". This global analysis of TSS in sheep will significantly enhance the annotation of gene models in the new ovine reference assembly. Our analyses provide one of the highest resolution annotations of transcript regulation and diversity in a livestock species to date.

17.
BMC Genomics ; 10: 216, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19432955

RESUMO

BACKGROUND: Over the last decade, several studies have identified quantitative trait loci (QTL) affecting variation of immune related traits in mammals. Recent studies in humans and mice suggest that part of this variation may be caused by polymorphisms in genes involved in Toll-like receptor (TLR) signalling. In this project, we used a comparative approach to investigate the importance of TLR-related genes in comparison with other immunologically relevant genes for resistance traits in five species by associating their genomic location with previously published immune-related QTL regions. RESULTS: We report the genomic localisation of TLR1-10 and ten associated signalling molecules in sheep and pig using in-silico and/or radiation hybrid (RH) mapping techniques and compare their positions with their annotated homologues in the human, cattle and mouse whole genome sequences. We also report medium-density RH maps for porcine chromosomes 8 and 13. A comparative analysis of the positions of previously published relevant QTLs allowed the identification of homologous regions that are associated with similar health traits in several species and which contain TLR related and other immunologically relevant genes. Additional evidence was gathered by examining relevant gene expression and association studies. CONCLUSION: This comparative genomic approach identified eight genes as potentially causative genes for variations of health related traits. These include susceptibility to clinical mastitis in dairy cattle, general disease resistance in sheep, cattle, humans and mice, and tolerance to protozoan infection in cattle and mice. Four TLR-related genes (TLR1, 6, MyD88, IRF3) appear to be the most likely candidate genes underlying QTL regions which control the resistance to the same or similar pathogens in several species. Further studies are required to investigate the potential role of polymorphisms within these genes.


Assuntos
Hibridização Genômica Comparativa , Locos de Características Quantitativas , Receptores Toll-Like/genética , Animais , Bovinos , Cromossomos de Mamíferos , Suscetibilidade a Doenças , Genômica/métodos , Humanos , Imunidade Inata/genética , Camundongos , Mapeamento de Híbridos Radioativos , Ovinos/genética , Suínos/genética
18.
Differentiation ; 76(3): 283-98, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17697128

RESUMO

The callipyge mutation in sheep in the form of the paternal heterozygote results in skeletal muscle hypertrophy, which is most pronounced in the hindquarters. Overexpression of one of the genes in the region of the causative single-nucleotide polymorphism, Dlk1, is postulated to be a primary cause of the muscle hypertrophy although the mechanism is not clear. This study examined the expression of Dlk1 mRNA and its encoded protein in skeletal muscles of callipyge and wild-type sheep. The muscles examined included those that demonstrate hypertrophy in callipyge sheep as well as an unaffected muscle. The expression pattern of Dlk1 protein in these muscles was also measured over a developmental time course ranging from 80 days of gestation to 12 weeks after birth. Quantitative reverse transcription-polymerase chain reaction demonstrated that Dlk1 mRNA was significantly increased in affected, but not unaffected, muscles from callipyge sheep at 120 days of gestation through to 12 weeks of age. Immuno-localization of Dlk1 was pronounced in the interstitial connective tissue of fetal muscle but was less intense at later ages. No clear difference in Dlk1 immuno-localization was noted between genotypes in the fetal samples. Strong myofiber-specific Dlk1 immuno-localization was observed in hypertrophied callipyge muscles at 12 weeks of age. This staining was exclusively associated with fast type II myofibers and these had a significantly larger mean cross-sectional area, compared with fast type II myofibers in control sheep that did not overexpress Dlk1. In addition, Dlk1 immuno-localization was associated with a sub-population of Pax7-positive mononucleated cells in all skeletal muscles examined during fetal development and at birth, but this was not apparent at 12 weeks. There were no genotype-dependent alterations in the mRNA expression patterns of a number of promyogenic transcription factors indicating that the callipyge mutation was not affecting muscle cell differentiation per se. We postulate that Dlk1 is implicated in the commitment and/or proliferation of fetal myoblasts as well as in the maintenance of hypertrophy in fully differentiated myofibers.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Animais , Sequência de Bases , Western Blotting , Linhagem da Célula , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Músculo Esquelético/citologia , Fenótipo
19.
Front Genet ; 10: 327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156693

RESUMO

In 2008, a consortium led by the Agricultural Research Service (ARS) and the National Institute for Food and Agriculture (NIFA) published the "Blueprint for USDA Efforts in Agricultural Animal Genomics 2008-2017," which served as a guiding document for research and funding in animal genomics. In the decade that followed, many of the goals set forth in the blueprint were accomplished. However, several other goals require further research. In addition, new topics not covered in the original blueprint, which are the result of emerging technologies, require exploration. To develop a new, updated blueprint, ARS and NIFA, along with scientists in the animal genomics field, convened a workshop titled "Genome to Phenome: A USDA Blueprint for Improving Animal Production" in November 2017, and these discussions were used to develop new goals for the next decade. Like the previous blueprint, these goals are grouped into the broad categories "Science to Practice," "Discovery Science," and "Infrastructure." New goals for characterizing the microbiome, enhancing the use of gene editing and other biotechnologies, and preserving genetic diversity are included in the new blueprint, along with updated goals within many genome research topics described in the previous blueprint. The updated blueprint that follows describes the vision, current state of the art, the research needed to advance the field, expected deliverables, and partnerships needed for each animal genomics research topic. Accomplishment of the goals described in the blueprint will significantly increase the ability to meet the demands for animal products by an increasing world population within the next decade.

20.
Curr Biol ; 15(8): 743-9, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15854907

RESUMO

The Dlk1-Gtl2 imprinted domain, encompassing the callipyge (CLPG) locus in sheep, has recently been shown to harbor a large number of maternally expressed miRNA genes [1, 2]. Two of these (mir127 and mir136) are processed from a transcript (antiPeg11) that is antisense to Rtl1/Peg11, a paternally expressed intronless gene with homology to the gag and pol polyproteins of Sushi-like retroelements [3]. We herein demonstrate that several additional miRNAs are processed from antiPeg11 and that these regulate Rtl1/Peg11 in trans by guiding RISC-mediated cleavage of its mRNA. This is the first demonstration of miRNA-mediated RNAi involving imprinted genes in mammals.


Assuntos
Impressão Genômica/genética , Glicoproteínas/genética , Mamíferos/genética , MicroRNAs/genética , Proteínas/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Animais , Sequência de Bases , Biologia Computacional , Componentes do Gene , Padrões de Herança/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Mutação/genética , Proteínas/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA