Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Amino Acids ; 56(1): 35, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698213

RESUMO

Chagas disease, caused by the protozoa Trypanosoma cruzi, continues to be a serious public health problem in Latin America, worsened by the limitations in its detection. Given the importance of developing new diagnostic methods for this disease, the present review aimed to verify the number of publications dedicated to research on peptides that demonstrate their usefulness in serodiagnosis. To this end, a bibliographic survey was conducted on the PubMed platform using the keyword "peptide" or "epitope" combined with "Chagas disease" or "Trypanosoma cruzi"; "diagno*" or "serodiagnosis" or "immunodiagnosis", without period restriction. An increasing number of publications on studies employing peptides in ELISA and rapid tests assays was verified, which confirms the expansion of research in this field. It is possible to observe that many of the peptides tested so far originate from proteins widely used in the diagnosis of Chagas, and many of them are part of commercial tests developed. In this sense, as expected, promising results were obtained for several peptides when tested in ELISA, as many of them exhibited sensitivity and specificity values above 90%. Furthermore, some peptides have been tested in several studies, confirming their diagnostic potential. Despite the promising results observed, it is possible to emphasize the need for extensive testing of peptides, using different serological panels, in order to confirm their potential. The importance of producing an effective assay capable of detecting the clinical stages of the disease, as well as new immunogenic antigens that enable new serological diagnostic tools for Chagas disease, is evident.


Assuntos
Doença de Chagas , Ensaio de Imunoadsorção Enzimática , Peptídeos , Trypanosoma cruzi , Doença de Chagas/diagnóstico , Doença de Chagas/imunologia , Doença de Chagas/sangue , Humanos , Trypanosoma cruzi/imunologia , Peptídeos/imunologia , Peptídeos/química , Ensaio de Imunoadsorção Enzimática/métodos , Testes Imunológicos/métodos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/sangue , Testes Sorológicos/métodos
2.
Parasite Immunol ; 46(5): e13037, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720446

RESUMO

The treatment for visceral leishmaniasis (VL) causes toxicity in patients, entails high cost and/or leads to the emergence of resistant strains. No human vaccine exists, and diagnosis presents problems related to the sensitivity or specificity of the tests. Here, we tested two phage clones, B1 and D11, which were shown to be protective against Leishmania infantum infection in a murine model as immunotherapeutics to treat mice infected with this parasite species. The phages were used alone or with amphotericin B (AmpB), while other mice received saline, AmpB, a wild-type phage (WTP) or WTP/AmpB. Results showed that the B1/AmpB and D11/AmpB combinations induced polarised Th1-type cellular and humoral responses, which were primed by high levels of parasite-specific IFN-γ, IL-12, TNF-α, nitrite and IgG2a antibodies, which reflected in significant reductions in the parasite load in distinct organs of the animals when analyses were performed 1 and 30 days after the treatments. Reduced organic toxicity was also found in these animals, as compared with the controls. In conclusion, preliminary data suggest the potential of the B1/AmpB and D11/AmpB combinations as immunotherapeutics against L. infantum infection.


Assuntos
Anfotericina B , Anticorpos Antiprotozoários , Imunoterapia , Leishmania infantum , Leishmaniose Visceral , Camundongos Endogâmicos BALB C , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/tratamento farmacológico , Animais , Anfotericina B/uso terapêutico , Anfotericina B/administração & dosagem , Anticorpos Antiprotozoários/sangue , Leishmania infantum/imunologia , Leishmania infantum/efeitos dos fármacos , Camundongos , Imunoterapia/métodos , Feminino , Antiprotozoários/uso terapêutico , Antiprotozoários/administração & dosagem , Imunoglobulina G/sangue , Carga Parasitária , Modelos Animais de Doenças , Técnicas de Visualização da Superfície Celular , Citocinas/metabolismo , Células Th1/imunologia
3.
Microb Cell Fact ; 23(1): 145, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778337

RESUMO

Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.


Assuntos
Epitopos , Escherichia coli , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Humanos , Epitopos/imunologia , Epitopos/genética , Testes Imunológicos/métodos , Animais , COVID-19/diagnóstico
4.
Parasite Immunol ; 44(8): e12921, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35437797

RESUMO

Treatment against visceral leishmaniasis (VL) presents problems by the toxicity of drugs, high cost and/or emergence of resistant strains. The diagnosis is hampered by variable sensitivity and/or specificity of tests. In this context, prophylactic vaccination could represent a control measure against disease. In this study, the protective efficacy of Leishmania LiHyC protein was evaluated in a murine model against Leishmania infantum infection. LiHyC was used as recombinant protein (rLiHyC) associated with saponin (rLiHyC/S) or Poloxamer 407-based polymeric micelles (rLiHyC/M) to immunize mice. Animals received also saline, saponin or empty micelles as controls. The immunogenicity was evaluated before and after the challenge, and results showed that vaccination with rLiHyC/S or rLiHyC/M induced the production of high levels of interferon-gamma (IFN-γ), interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor in cell culture supernatants, as well as higher IFN-γ expression evaluated by RT-qPCR and involvement from CD4+ and CD8+ T-cell subtypes producing IFN-γ, tumor necrosis factor-α and IL-2. A positive lymphoproliferative response was also found in cell cultures from vaccinated animals, besides high levels of rLiHyC- and parasite-specific nitrite and IgG2a antibodies. Immunological assays correlated with significant reductions in the parasite load in the spleens, livers, bone marrows and draining lymph nodes from vaccinated mice, when compared to values found in the controls. The micellar composition showed slightly better immunological and parasitological data, as compared to rLiHyC/S. Results suggest that rLiHyC associated with adjuvants could be considered for future studies as a vaccine candidate against VL.


Assuntos
Leishmania infantum , Vacinas contra Leishmaniose , Leishmaniose Visceral , Saponinas , Animais , Antígenos de Protozoários , Interferon gama , Interleucina-12 , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Proteínas Recombinantes
5.
Appl Microbiol Biotechnol ; 106(12): 4627-4641, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35759035

RESUMO

Tegumentary leishmaniasis (TL) is a disease of high severity and incidence in Brazil, and Leishmania braziliensis is its main etiological agent. The inefficiency of control measures, such as high toxicity and costs of current treatments and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present work developed a gene encoding multiple T-cell (CD4+/CD8+) epitope, derived from conserved proteins found in Leishmania species and associated with TL, to generate a chimeric protein (rMEP/TL) and compose a vaccine formulation. For this, six T-cell epitopes were selected by immunoinformatics approaches from proteins present in the amastigote stage and associated with host-parasite interactions. The following formulations were then tested in an L. braziliensis murine infection model: rMEP/TL in saline or associated with MPLA-PHAD®. Our data revealed that, after immunization (three doses; 14-day intervals) and subsequent challenging, rMEP/TL and rMEP/TL + MPLA-vaccinated mice showed an increased production of key immunological biomarkers of protection, such as IgG2a, IgG2a/IgG1, NO, CD4+, and CD8+ T-cells with IFN-γ and TNF-α production, associated with a reduction in CD4+IL-10+ and CD8+IL-10+ T-cells. Vaccines also induced the development of central (CD44highCD62Lhigh) and effector (CD44highCD62Llow) memory of CD4+ and CD8+ T-cells. These findings, associated with the observation of lower rates of parasite burdens in the vaccinated groups, when compared to the control groups, suggest that immunization with rMEP/TL and, preferably, associated with an adjuvant, may be considered an effective tool to prevent TL. KEY POINTS: • Rational design approaches for vaccine development. • Central and effector memory of CD4+ and CD8+ T-cells. • Vaccine comprised of rMEP/TL plus MPLA as an effective tool to prevent TL.


Assuntos
Vacinas contra Leishmaniose , Leishmaniose , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/genética , Imunoglobulina G , Interleucina-10/metabolismo , Leishmaniose/prevenção & controle , Vacinas contra Leishmaniose/genética , Camundongos , Camundongos Endogâmicos BALB C
6.
Parasitol Res ; 121(7): 2129-2140, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35614147

RESUMO

Leishmaniasis is a parasitic disease caused by Leishmania protozoa, which presents a large spectrum of clinical manifestations. In the present study, a quinoline derivative salt named N-(2-((7-chloroquinolin-4-yl)amino)ethyl)-N-(prop-2-yn-1-yl)prop-2-yn-1-aminium chloride or QDS3 was in vitro and in vivo tested against L. infantum by means of its incorporation in Poloxamer 407-based polymeric micelles (QDS3/M). The in vitro antileishmanial activity of QDS3 and QDS3/M was investigated in L. infantum promastigotes, axenic amastigotes and infected macrophages. BALB/c mice were infected with L. infantum, and parasitological parameters were evaluated 1 and 15 days post-treatment by determining the parasite load by a limiting dilution assay, besides a quantitative PCR (qPCR) method. Immunological response was assessed based on production of cellular cytokines, as well as by quantification of nitrite levels and specific antibodies. In vitro results showed that QDS3 free or in micelles presented effective antileishmanial action against both parasite stages, being more effective in amastigotes. In vivo data showed that treatment using QDS3 or QDS3/M reduced the parasite load in the livers, spleens, draining lymph nodes (dLN) and bone marrows of the treated animals, 1 and 15 days after treatment, when compared to values found in the control groups. Additionally, treated mice developed a polarized Th1-type immune response, with higher levels of IL-12, IFN-γ, GM-CSF and nitrite, besides high production of specific IgG2a antibodies, when compared to the controls. Parasitological and immunological data obtained using the micellar composition were better than the others. In conclusion, QDS3, mainly when applied in a delivery adjuvant system, could be considered for future studies as therapeutic candidate against VL.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Quinolinas , Animais , Antiprotozoários/uso terapêutico , Leishmaniose/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Nitritos/uso terapêutico , Polímeros/uso terapêutico , Quinolinas/uso terapêutico
7.
Appl Microbiol Biotechnol ; 105(18): 6805-6817, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34432132

RESUMO

Leishmania braziliensis is responsible for most cases of human tegumentary leishmaniasis (HTL) and has caused a wide range of clinical manifestations, including cutaneous (CL) and mucosal leishmaniasis (ML). The diagnosis is based on criteria that consider epidemiological data, clinical findings, and laboratory tests and is hard to establish. For laboratory tests, none of the assays available can be considered gold standards for disease detection. In addition, the Montenegro skin test, essential to supporting infectologists in the clinical management of the disease, is no longer available in Brazil. Thus, the aim of this study was to develop new targets to be used in diagnostic tests for HTL. In the first step, we carried out two-dimensional gel electrophoresis, followed by mass spectrometry, combined with heat map analysis and immunoproteomics approach, and disclosed eight proteins expressed in the amastigote stage specifically recognized by serum from CL and ML patients. A chimeric protein was designed based on the combination of thirteen linear B-cell epitopes, identified by immunoinformatics analysis, from L. braziliensis proteins. Our results showed that the strategy used in this work was successful in developing an antigen to be used in immunological assays (100.0% sensitivity and specificity) in the detection of HTL cases and in comparison with results obtained from an ELISA using soluble L. braziliensis antigen (SLb-Antigen) and immunofluorescence assay (Bio-Manguinhos/FIOCRUZ). The present technology opens the door for its use in field exams by means of an immunochromatographic test, which will be even more helpful in regions without laboratory structures.Key points• Rational strategy to develop antigens.• Integration between immunoproteomic and immunoinformatics analysis.• Chimeric protein shows high performance in HTL diagnosis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Ensaio de Imunoadsorção Enzimática , Humanos , Leishmaniose Cutânea/diagnóstico , Proteômica , Proteínas Recombinantes de Fusão
8.
Appl Microbiol Biotechnol ; 102(14): 6069-6080, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736822

RESUMO

Serological tests are preferentially used for the diagnosis of Chagas' disease (CD) during the chronic phase because of the low parasitemia and high anti-Trypanosoma cruzi antibody titers. However, the current methods showed several disadvantages, as contradictory or inconclusive results, mainly related to the characteristics of the antigens used, in general, crude or whole parasites, but also due to antigen production protocol and the experimental conditions used in serological tests. Thus, better-quality serological assays are urgently needed. Here, we performed a wide immunogenomic screen strategy to identify conserved linear B-cell epitopes in the predicted proteome based on genome sequence from T. cruzi strains to will be applied as synthetic peptides in the serodiagnosis of the chronic CD. Three B-cell epitopes derived from mucin-associated surface protein (MASP) family, expressed in both infective parasite stages, trypomastigote and amastigotes, conserved in T. cruzi strains, and highly divergent as compared with Leishmania spp. proteome, were selected for this study. The results demonstrated that synthetic peptide 2 and a mixture of peptides (Mix II: peptides 2 and 3) were able to identify all chronic CD cases, indeterminate or Chagas cardiomyopathy clinical presentation, and simultaneously able to discriminate infections caused by Leishmania parasites, with high accuracy (98.37 and 100.00%, respectively) and agreement (kappa index = 0.967 and 1.000, respectively) with direct methods as compared to current diagnostic pipeline performed by reference laboratories in Brazil. This study represents an interesting strategy for the discovery of new antigens applied to serologic diagnosis of infectious diseases and for the technological development of platforms for large-scale production of diagnostic tests.


Assuntos
Antígenos de Protozoários/imunologia , Doença de Chagas/diagnóstico , Epitopos de Linfócito B/imunologia , Genômica , Trypanosoma cruzi/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Brasil , Doença de Chagas/imunologia , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Humanos , Proteoma , Testes Sorológicos , Trypanosoma cruzi/genética
9.
Parasitol Res ; 117(2): 391-403, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29248978

RESUMO

Leishmaniasis has become a significant public health issue in several countries in the world. New products have been identified to treat against the disease; however, toxicity and/or high cost is a limitation. The present work evaluated the antileishmanial activity of a new naphthoquinone derivate, Flau-A [2-(2,3,4-tri-O-acetyl-6-deoxy-ß-L-galactopyranosyloxy)-1,4-naphthoquinone], against promastigote and amastigote-like stages of Leishmania amazonensis and L. infantum. In addition, the cytotoxicity in murine macrophages and human red cells was also investigated. The mechanism of action of Flau-A was assessed in L. amazonensis as well as its efficacy in treating infected macrophages and inhibiting infection of pretreated parasites. Results showed that Flau-A was effective against promastigotes and amastigote-like forms of both parasite species, as well as showed low toxicity in mammalian cells. Results also highlighted the morphological and biochemical alterations induced by Flau-A in L. amazonensis, including loss of mitochondrial membrane potential, as well as increased reactive oxygen species production, cell shrinkage, and alteration of the plasma membrane integrity. The present study demonstrates for the first time the antileishmanial activity of Flau-A against two Leishmania species and suggests that the mitochondria of the parasites may be the main target organelle. Data shown here encourages the use of this molecule in new studies concerning treatment against Leishmania infection in mammalian hosts.


Assuntos
Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Naftoquinonas/farmacologia , Animais , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/química
10.
Parasitol Res ; 116(4): 1197-1206, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28150041

RESUMO

The serodiagnosis for tegumentary leishmaniasis (TL) presents problems related to the sensitivity and/or specificity of the tests. In the present study, an enzyme-linked immunosorbent assay (ELISA) technique was used to evaluate the performance from a Leishmania braziliensis hypothetical protein, LbHyM, in an attempt to compare its serological reactivity with a soluble Leishmania antigenic preparation (SLA) for the serodiagnosis of cutaneous (CL) and mucosal (ML) leishmaniasis. LbHyM was predicted to be a kinesin-like protein by bioinformatics tools. Serum samples were collected from both CL and ML patients, as well as from those with Chagas disease and from healthy subjects living in endemic or non-endemic areas of TL. Also, sera were collected from patients before and after the treatments, seeking to evaluate their serological follow-up in relation to the anti-protein and anti-parasite antibody levels. When an ELISA-rLbHyM assay was performed, it proved to be significantly more sensitive than ELISA-L. braziliensis SLA in detecting both CL and ML patients. Also, when using sera from Chagas disease patients, the ELISA-rLbHyM proved to be more specific than ELISA-SLA. The anti-protein and anti-parasite antibody levels were also evaluated 6 months after the treatments, and treated patients showed significantly lower levels of specific-rLbHyM antibodies, when compared to the anti-parasite antibody levels. In conclusion, the ELISA-rLbHyM assay can be considered a confirmatory serological technique for the serodiagnosis of L. braziliensis infection and can also be used in the serological follow-up of treated patients, aiming to correlate the low anti-protein antibody levels with the improvement of the healthy state of the patients.


Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/diagnóstico , Cinesinas/imunologia , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/diagnóstico , Proteínas de Protozoários/imunologia , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Doença de Chagas/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Leishmania infantum/imunologia , Leishmaniose Cutânea/parasitologia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Adulto Jovem
11.
Parasitol Res ; 115(11): 4083-4095, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27365053

RESUMO

The current treatment of leishmaniasis has been hampered due to the high toxicity of the available drugs and long duration protocols, which often lead to its abandonment. In the present study, a poloxamer 407-based delivery system was developed, and a molecule, 8-hydroxyquinoline (8-HQN), was incorporated with it, leading to an 8-HQN/micelle (8-HQN/M) composition. Assays were performed to evaluate the in vitro antileishmanial activity of 8-HQN/M against Leishmania amazonensis stationary promastigotes. The cytotoxicity in murine macrophages and in human red cells, as well as the efficacy of the treatment in macrophages infected by parasites, was also assessed. This product was also evaluated for the treatment of murine tegumentary leishmaniasis, using L. amazonensis-infected BALB/c mice. To evaluate the in vivo efficacy of the treatment, the average lesion diameter (area) in the infected tissue, as well as the parasite load at the site of infection (skin), spleen, liver and draining lymph nodes were examined. Non-incorporated micelle (B-8-HQN/M) and the free molecule (8-HQN) were used as controls, besides animals that received only saline. The parasite burden was evaluated by limiting dilution and quantitative real-time PCR (qPCR) techniques, and immunological parameters associated with the treatments were also investigated. In the results, the 8-HQN/M group, when compared to the others, presented more significant reductions in the average lesion diameter and in the parasite burden in the skin and all evaluated organs. These animals also showed significantly higher levels of parasite-specific IFN-γ, IL-12, and GM-CSF, associated with low levels of IL-4 and IL-10, when compared to the saline, 8-HQN/M, and B-8-HQN groups. A predominant IL-12-driven IFN-γ production, against parasite proteins, mainly produced by CD4+ T cells, was observed in the treated animals, post-infection. In conclusion, 8-HQN/M was highly effective in treating L. amazonensis-infected BALB/c mice and can be considered alone, or combined with other drugs, as an alternative treatment for tegumentary leishmaniasis. Graphical Abstract Therapeutic scheme and immunological and parasitological parameters developed in the present study.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Oxiquinolina/uso terapêutico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Eritrócitos/parasitologia , Feminino , Humanos , Leishmaniose Cutânea/parasitologia , Fígado/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Oxiquinolina/administração & dosagem , Carga Parasitária , Polímeros , Baço/parasitologia , Linfócitos T/imunologia
12.
Parasitology ; 142(10): 1335-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099574

RESUMO

Two mimotopes of Leishmania infantum identified by phage display were evaluated as vaccine candidates in BALB/c mice against Leishmania amazonensis infection. The epitope-based immunogens, namely B10 and C01, presented as phage-fused peptides; were used without association of a Th1 adjuvant, and they were administered isolated or in combination into animals. Both clones showed a specific production of interferon-gamma (IFN-γ), interleukin-12 (IL-12) and granulocyte/macrophage colony-stimulating factor (GM-CSF) after in vitro spleen cells stimulation, and they were able to induce a partial protection against infection. Significant reductions of parasite load in the infected footpads, liver, spleen, bone marrow and paws' draining lymph nodes were observed in the immunized mice, in comparison with the control groups (saline, saponin, wild-type and non-relevant clones). Protection was associated with an IL-12-dependent production of IFN-γ, mediated mainly by CD8(+) T cells, against parasite proteins. Protected mice also presented low levels of IL-4 and IL-10, as well as increased levels of parasite-specific IgG2a antibodies. The association of both clones resulted in an improved protection in relation to their individual use. More importantly, the absence of adjuvant did not diminish the cross-protective efficacy against Leishmania spp. infection. This study describes for the first time two epitope-based immunogens selected by phage display technology against L. infantum infected dogs sera, which induced a partial protection in BALB/c mice infected with L. amazonensis.


Assuntos
Bacteriófagos/imunologia , Epitopos/imunologia , Leishmania infantum/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose/prevenção & controle , Vacinas Protozoárias/imunologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C
13.
Exp Parasitol ; 153: 180-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25845753

RESUMO

The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the BALB/c mice proved to be similar when comparing the F2 and F4 fractions with a known Th1 adjuvant (saponin), though animals vaccinated with saponin did present a slight to moderate inflammatory edema on their hind footpads. In conclusion, the F2 and F4 fractions appear to induce a Th1-type immune response and, in this context, they could be evaluated in association with other protective antigens against Leishmania, as well as in other disease models.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Agaricus/química , Antígenos de Protozoários/administração & dosagem , Leishmaniose Visceral/prevenção & controle , Polissacarídeos/administração & dosagem , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-4/imunologia , Leishmania infantum/genética , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Células Th1/imunologia
14.
Trop Med Infect Dis ; 9(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38393130

RESUMO

Visceral Leishmaniasis (VL) has a high death rate, with 500,000 new cases and 50,000 deaths occurring annually. Despite the development of novel strategies and technologies, there is no adequate treatment for the disease. Therefore, the purpose of this study is to find structural analogs of natural products as potential novel drugs to treat VL. We selected structural analogs from natural products that have shown antileishmanial activities, and that may impede the purine salvage pathway using computer-aided drug-design (CADD) approaches. For these, we started with the vastly studied target in the pathway, the adenine phosphoribosyl transferase (APRT) protein, which alone is non-essential for the survival of the parasite. Keeping this in mind, we search for a substance that can bind to multiple targets throughout the pathway. Computational techniques were used to study the purine salvage pathway from Leishmania infantum, and molecular dynamic simulations were used to gather information on the interactions between ligands and proteins. Because of its low homology to human proteins and its essential role in the purine salvage pathway proteins network interaction, the findings further highlight the significance of adenylosuccinate lyase protein (ADL) as a therapeutic target. An analog of the alkaloid Skimmianine, N,N-diethyl-4-methoxy-1-benzofuran-6-carboxamide, demonstrated a good binding affinity to APRT and ADL targets, no expected toxicity, and potential for oral route administration. This study indicates that the compound may have antileishmanial activity, which was granted in vitro and in vivo experiments to settle this finding in the future.

15.
Diagn Microbiol Infect Dis ; 109(3): 116326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692205

RESUMO

Serodiagnosis methods have been used as platforms for diagnostic tests for many diseases. Due to magnetic nanoparticles' properties to quickly detach from an external magnetic field and particle size effects, these nanomaterials' functionalization allows the specific isolation of target analytes, enhancing accuracy parameters and reducing serodiagnosis time. Superparamagnetic iron oxide nanoparticles (MNPs) were synthesized and functionalized with polyethylene glycol (PEG) and then associated with the synthetic Leishmaniosis epitope. This nano-peptide antigen showed promising results. Regarding Tegumentary leishmaniasis diagnostic accuracy, the AUC was 0.8398 with sensibility 75% (95CI% 50.50 - 89.82) and specificity 87.50% (95CI% 71.93 - 95.03), and Visceral leishmaniasis accuracy study also present high performance, the AUC was 0.9258 with sensibility 87.50% (95CI% 63.98 - 97.78) and specificity 87.50% (95CI% 71.93 - 95.03). Our results demonstrate that the association of the antigen with MNPs accelerates and improves the diagnosis process. MNPs could be an important tool for enhancing serodiagnosis.


Assuntos
Ensaio de Imunoadsorção Enzimática , Polietilenoglicóis , Sensibilidade e Especificidade , Humanos , Ensaio de Imunoadsorção Enzimática/métodos , Polietilenoglicóis/química , Antígenos de Protozoários/imunologia , Leishmaniose/diagnóstico , Nanopartículas Magnéticas de Óxido de Ferro/química , Anticorpos Antiprotozoários/sangue
16.
J Nutr Biochem ; 123: 109492, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866427

RESUMO

Every year, thousands of children, particularly those under 5 years old, die because of cerebral malaria (CM). Following conventional treatment, approximately 25% of surviving individuals have lifelong severe neurocognitive sequelae. Therefore, improved conventional therapies or effective alternative therapies that prevent the severe infection are crucial. Omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) are known to have antioxidative and anti-inflammatory effects and protect against diverse neurological disorders, including Alzheimer's and Parkinson's diseases. However, little is known regarding the effects of Ω-3 PUFAs against parasitic infections. In this study, C57BL/6 mice received supplemental treatment of a fish oil rich in the Ω-3 PUFA, docosahexaenoic acid (DHA), which was started 15 days prior to infection with Plasmodium berghei ANKA and was maintained until the end of the study. Animals treated with the highest doses of DHA, 3.0 and 6.0 g/kg body weight, had 60 and 80% chance of survival, respectively, while all nontreated mice died by the 7th day postinfection due to CM. Furthermore, the parasite load during the critical period for CM development (5th to 11th day postinfection) was controlled in treated mice. However, after this period all animals developed high levels of parasitemia until the 20th day of infection. DHA treatment also effectively reduced blood-brain barrier (BBB) damage and brain edema and completely prevented brain hemorrhage and vascular occlusion. A strong anti-inflammatory profile was observed in the brains of DHA-treated mice, as well as, an increased number of neutrophil and reduced number of CD8+ T leukocytes in the spleen. Thus, this is the first study to demonstrate that the prophylactic use of DHA-rich fish oil exerts protective effects against experimental CM, reducing the mechanical and immunological events caused by the P. berghei ANKA infection.


Assuntos
Ácidos Graxos Ômega-3 , Malária Cerebral , Criança , Humanos , Camundongos , Animais , Pré-Escolar , Óleos de Peixe/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Malária Cerebral/prevenção & controle , Malária Cerebral/tratamento farmacológico , Camundongos Endogâmicos C57BL , Ácidos Graxos Ômega-3/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
17.
Vaccine ; 42(21): 126178, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39096765

RESUMO

American Tegumentary Leishmaniasis (ATL) is a disease of high severity and incidence in Brazil, in addition to being a worldwide concern in public health. Leishmania amazonensis is one of the etiological agents of ATL, and the inefficiency of control measures, associated with the high toxicity of the treatment and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present study proposes to elaborate a chimeric protein (rChiP), based on the fusion of multiple epitopes of CD4+/CD8+ T cells, identified in the immunoproteome of the parasites L. amazonensis and L. braziliensis. The designed chimeric protein was tested in the L. amazonensis murine model of infection using the following formulations: 25 µg of the rChiP in saline (rChiP group) and 25 µg of the rChiP plus 25 µg of MPLA-PHAD® (rChiP+MPLA group). After completing immunization, CD4+ and CD8+ T cells, stimulated with SLa-Antigen or rChiP, showed an increased production of nitric oxide and intracytoplasmic pro-inflammatory cytokines, in addition to the generation of central and effector memory T cells. rChiP and rChiP+MPLA formulations were able to promote an effective protection against L. amazonensis infection determined by a reduction in the development of skin lesions and lower parasitic burden. Reduction in the development of skin lesions and lower parasitic burden in the vaccinated groups were associated with an increase of nitrite, CD4+/CD8+IFN-γ+TNF-α+ and CD4+/CD8+CD44highCD62Lhigh/low T cells, IgGTotal, IgG2a, and lower rates of IgG1 and CD4+/CD8+IL-10+. This data suggests that proposed formulations could be considered potential tools to prevent ATL.


Assuntos
Adjuvantes Imunológicos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Memória Imunológica , Vacinas contra Leishmaniose , Leishmaniose Cutânea , Animais , Leishmaniose Cutânea/prevenção & controle , Leishmaniose Cutânea/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Camundongos , Vacinas contra Leishmaniose/imunologia , Feminino , Adjuvantes Imunológicos/administração & dosagem , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Leishmania braziliensis/imunologia , Lipídeo A/análogos & derivados , Lipídeo A/imunologia , Anticorpos Antiprotozoários/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Modelos Animais de Doenças , Antígenos de Protozoários/imunologia
18.
Biomedicines ; 12(7)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39062074

RESUMO

Rocky Mountain or Brazilian spotted fever, caused by Rickettsia rickettsii, is a fulminant, seasonal, and neglected disease that occurs in focal points of North America and South America. Its rapid detection is essential for the better prognosis and survival rate of infected individuals. However, disease diagnosis still faces challenges as the accuracy of many of the available laboratory tests fluctuates. This review aimed to analyze methods for antibody or antigen detection, their gaps, and their evolution over time. A search was conducted to find all studies in the Pubmed database that described the antibody or antigen detection of R. rickettsii infections. Initially, a total of 403 articles were screened. Of these articles, only 17 fulfilled the pre-established inclusion criteria and were selected. Among the different methods applied, the IFA technique was the one most frequently found in the studies. However, it presented varied results such as a low specificity when using the indirect method. Other techniques, such as ELISA and immunohistochemistry, were also found, although in smaller numbers and with their own limitations. Although some studies showed promising results, there is a pressing need to find new techniques to develop a rapid and effective diagnosis of R. rickettssi infection.

19.
Curr Med Chem ; 31(30): 4763-4780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509682

RESUMO

Improving the diagnostic technology used to detect tegumentary leishmaniasis (TL) is essential in view of it being a widespread, often neglected tropical disease, with cases reported from the Southern United States to Northern Argentina. Recombinant proteins, recombinant multiepitope proteins, and synthetic peptides have been extensively researched and used in disease diagnosis. One of the benefits of applying these antigens is a measurable increase in sensitivity and specificity, which improves test accuracy. The present review aims to describe the use of these antigens and their diagnostic effectiveness. With that in mind, a bibliographic survey was conducted on the PudMed platform using the search terms "tegumentary leishmaniasis" AND "diagno", revealing that recombinant proteins have been described and evaluated for their value in TL diagnosis since the 1990s. However, there was a spike in the number of publications using all of the antigens between 2013 and 2022, confirming an expansion in research efforts to improve diagnosis. Moreover, all of the studies involving different antigens had promising results, including improved sensitivity and specificity. These data recognize the importance of doing research with new technologies focused on developing quick, more effective diagnostic kits as early diagnosis facilitates treatment.


Assuntos
Antígenos de Protozoários , Leishmaniose Cutânea , Proteínas Recombinantes , Antígenos de Protozoários/imunologia , Humanos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/biossíntese , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/imunologia , Testes Imunológicos/métodos
20.
Front Microbiol ; 15: 1420226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139374

RESUMO

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is an important public health problem, occurring mainly in Latin America. The disease has a major social and economical effect, negatively impacting the life of the infected individuals, and bringing great costs to public health. An early and accurate diagnosis is essential for administration of early treatment. In addition, prognostic tests may aid disease management, decreasing hospitalization costs. However, the serological diagnostic scenario for CD still faces several challenges, making the development of new diagnostic kits a pressing matter. Facing this scenario, several researchers have expanded efforts in developing and testing new antigens, such as recombinant proteins and recombinant multiepitope proteins, with promising results. These recombinant antigens offer several advantages, such as improved sensitivity and specificity, in addition to facilitated scaling. Also, it has been possible to observe a rising number of studies using ELISA and point-of-care platforms, employing these antigens in the past few years. Among them, recombinant proteins were the most applied antigens, demonstrating great capacity to discriminate between positive and negative samples. Although fewer in number, recombinant multiepitope proteins also demonstrated an improved diagnostic performance. Indeed, a great number of studies employing these antigens showed sensitivity and specificity values above 90%, greatly impacting diagnostic accuracy. Nevertheless, despite the good results found, it is still possible to observe some bottlenecks in the development of new antigens, such as the scarcity of tests with sera from the acute phase and the variability of results in different geographic areas. In this sense, aiming to contribute to control and health programs, the continuous search for a more accurate serological diagnosis is essential, both for the acute and chronic phases of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA