Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1731-1740, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206803

RESUMO

Perfluorooctanesulfonate (PFOS) has become a major concern due to its widespread occurrence in the environment and severe toxic effects. In this study, we investigate PFOS sorption on goethite surfaces under different water chemistry conditions to understand the impact of variable groundwater chemistry. Our investigation is based on multiple lines of evidence, including (i) a series of sorption experiments with varying pH, ionic strength, and PFOS initial concentration, (ii) IR spectroscopy analysis, and (iii) surface complexation modeling. PFOS was found to bind to goethite through a strong hydrogen-bonded (HB) complex and a weaker outer-sphere complex involving Na+ coadsorption (OS-Na+). The pH and ionic strength of the solution had a nontrivial impact on the speciation and coexistence of these surface complexes. Acidic conditions and low ionic strength promoted hydrogen bonding between the sulfonate headgroup and protonated hydroxo surface sites. Higher electrolyte concentrations and pH values hindered the formation of strong hydrogen bonds upon the formation of a ternary PFOS-Na+-goethite outer-sphere complex. The findings of this study illuminate the key control of variable solution chemistry on PFOS adsorption to mineral surfaces and the importance to develop surface complexation models integrating mechanistic insights for the accurate prediction of PFOS mobility and environmental fate.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Compostos de Ferro , Água/química , Minerais/química , Ácidos Alcanossulfônicos/química , Compostos de Ferro/química , Adsorção , Concentração de Íons de Hidrogênio
2.
Environ Sci Technol ; 58(31): 13866-13878, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39037862

RESUMO

Perfluorooctanesulfonate (PFOS), a toxic anionic perfluorinated surfactant, exhibits variable electrostatic adsorption mechanisms on charge-regulated minerals depending on solution hydrochemistry. This work explores the interplay of multicomponent interactions and surface charge effects on PFOS adsorption to goethite surfaces under flow-through conditions. We conducted a series of column experiments in saturated goethite-coated porous media subjected to dynamic hydrochemical conditions triggered by step changes in the electrolyte concentration of the injected solutions. Measurements of pH and PFOS breakthrough curves at the outlet allowed tracking the propagation of multicomponent reactive fronts. We performed process-based reactive transport simulations incorporating a mechanistic network of surface complexation reactions to quantitatively interpret the geochemical processes. The experimental and modeling outcomes reveal that the coupled spatio-temporal evolution of pH and electrolyte fronts, driven by the electrostatic properties of the mineral, exerts a key control on PFOS mobility by determining its adsorption and speciation reactions on goethite surfaces. These results illuminate the important influence of multicomponent transport processes and surface charge effects on PFOS mobility, emphasizing the need for mechanistic adsorption models in reactive transport simulations of ionizable PFAS compounds to determine their environmental fate and to perform accurate risk assessment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Compostos de Ferro , Minerais , Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Propriedades de Superfície , Porosidade , Compostos de Ferro/química , Minerais/química , Concentração de Íons de Hidrogênio , Calibragem , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA