RESUMO
Tetraphenylethylene (TPE) derivatives are one of the fundamental units for developing aggregation induced emission (AIE) scaffolds. However, the underlying mechanisms implicated in the relaxation of the excited TPE remain a topic of ongoing discussion, while the effect of bulky substituents on its photobehaviour is still under scrutiny. Here, we report a detailed study of the photophysical properties of a new symmetrical and bulky TPE derivative with terphenyl groups (TTECOOBu) in solvents of different polarities and viscosities. Using femto- to nanosecond (fs-ns) time-resolved absorption and emission techniques, we elucidated the role of the phenyl group rotations and core ethylene bond twisting in its behaviour. We demonstrate that TTECOOBu in DCM solutions undergoes a 600 fs charge separation along the ethylene bond leading to a resonance structure with a lifetime of â¼1 ns. The latter relaxes via two consecutive events: a twisting of the ethylene bond (â¼ 9 ps) and a rotation of the phenyl rings (â¼ 30 ps) leading to conformationally-relaxed species with a largely Stokes-shifted emission (â¼ 12 500 cm-1). The formation of the red-emitting species clearly depends on the solvent viscosity and rigidity of the medium. Contrary to the photobehavior in the highly viscous triacetin or rigid polymer matrix of PMMA, a reversible mechanism was observed in DCM and DMF solutions. These results provide new findings on the ultrafast mechanisms of excited TPE derivatives and should help in the development of new molecular rotors with interesting AIE properties for photonic applications.
RESUMO
Tetraphenylethylene (TPE) derivatives are ones of the most versatile building blocks showing aggregation-induced emission (AIE). However, their applications are limited by the photophysical and photochemical processes that occur in their excited state. Herein, we report a detailed study of the photochemical behaviour of a new TPE derivative with bulky terphenyl groups (TTECOOBu) in solvents of different viscosities and in a PMMA film. UV light irradiation shows an efficient photocyclization reaction, which produces a 9,10-diphenylphenanthrene (DPP) derivative photoproduct. The emission spectra of the irradiated samples show intermediate (â¼420 nm) and final (â¼380 nm) species. The photocyclization events are more efficient in environments of higher viscosities or rigidity. We show that in a photoirradiated PMMA film containing TTECOOBu, it is possible to etch a message for more than 1 year. The kinetics is dictated by the motions of the phenyl rings and is faster when their motions are precluded or inhibited. We also elucidated the femto- to millisecond photodynamics of the intermediate and final photoproducts and provide a full picture of their relaxation, with the latter in â¼1 ns at S1 and â¼1 µs at T1. We also demonstrate that the kinetics of the bulky TTECOOBu is much slower than that of the TPE core. Our results also show that both photoevents are not reversible contrary to the case of TPE kinetics. We believe that these results will shed more light on the photochemical behaviour of TPE derivatives and should help in the development of novel TPE-based materials with improved photostability and photo-properties.
RESUMO
Mn(II)-based perovskite materials are being intensively explored for lighting applications; understanding the role of ligands regarding their photobehavior is fundamental for their development. Herein, we report on two Mn (II) bromide perovskites using monovalent (perovskite 1, P1) and bivalent (perovskite 2, P2) alkyl interlayer spacers. The perovskites were characterized with powder X-ray diffraction (PXRD), electron spin paramagnetic resonance (EPR), steady-state, and time-resolved emission spectroscopy. The EPR experiments suggest octahedral coordination in P1 and tetrahedral coordination for P2, while the PXRD results demonstrate the presence of a hydrated phase in P2 when exposed to ambient conditions. P1 exhibits an orange-red emission, while P2 shows a green photoluminescence, as a result of the different types of coordination of Mn(II) ions. Furthermore, the P2 photoluminescence quantum yield (26%) is significantly higher than that of P1 (3.6 %), which we explain in terms of different electron-phonon couplings and Mn-Mn interactions. The encapsulation of both perovskites into a PMMA film largely increases their stability against moisture, being more than 1000 h for P2. Upon increasing the temperature, the emission intensity of both perovskites decreases without a significant shift in the emission spectrum, which is explained in terms of an increase in the electron-phonon interactions. The photoluminescence decays fit two components in the microsecond regime-the shortest lifetime for hydrated phases and the longest one for non-hydrated phases. Our findings provide insights into the effects of linear mono- and bivalent organic interlayer spacer cations on the photophysics of these kinds of Mn (II)-based perovskites. The results will help in better designs of Mn(II)-perovskites, to increase their lighting performance.
Assuntos
Brometos , Compostos de Cálcio , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , PósRESUMO
Metal-organic frameworks (MOFs) can provide exceptional porosity for molecular guest encapsulation useful for emergent applications in sensing, gas storage, drug delivery, and optoelectronics. Central to the realization of such applications, however, is the successful incorporation of a functional guest confined within the host framework. Here, we demonstrate, for the first time, the feasibility of scattering-type scanning near-field optical microscopy (s-SNOM) and nano-Fourier transform infrared (nanoFTIR) spectroscopy, in concert with density functional theory (DFT) calculations to reveal the vibrational characteristics of the Guest@MOF systems. Probing individual MOF crystals, we pinpoint the local molecular vibrations and, thus, shed new light on the host-guest interactions at the nanoscale. Our strategy not only confirms the successful encapsulation of luminescent guest molecules in the porous host framework in single crystals but also further provides a new methodology for nanoscale-resolved physical and chemical identification of wide-ranging framework materials and designer porous systems for advanced applications.
RESUMO
Porous crystalline materials, such as covalent organic frameworks (COFs), have emerged as some of the most important materials over the last two decades due to their excellent physicochemical properties such as their large surface area and permanent, accessible porosity. On the other hand, thiophene derivatives are common versatile scaffolds in organic chemistry. Their outstanding electrical properties have boosted their use in different light-driven applications (photocatalysis, organic thin film transistors, photoelectrodes, organic photovoltaics, etc.), attracting much attention in the research community. Despite the great potential of both systems, porous COF materials based on thiophene monomers are scarce due to the inappropriate angle provided by the latter, which hinders its use as the building block of the former. To circumvent this drawback, researchers have engineered a number of thiophene derivatives that can form part of the COFs structure, while keeping their intrinsic properties. Hence, in the present minireview, we will disclose some of the most relevant thiophene-based COFs, highlighting their basic components (building units), spectroscopic properties and potential light-driven applications.
RESUMO
Rifampicin (Rif) is an effective antibiotic against mycobacterial infections and a wide range of Gram-positive and Gram-negative bacteria. The geometry, conformation and the intramolecular H-bond network of Rif can affect its antibacterial efficiency. In this work, we report on the excited-state dynamics of Rif in sodium phosphate buffer and dichloromethane solutions using femtosecond time-resolved spectroscopic methods. The femtosecond UV-Vis-nearIR transient absorption and fluorescence up-conversion experiments reveal an ultrafast (<100 fs) Franck-Condon relaxation with a partial charge transfer character in S1, and a short-lived emission (τâ¼ 6 ps) due to a non-radiative relaxation to the ground state, associated with the stretching of the vibrational mode of the Rif internal H-bond network. The large Stokes-shifted emission (â¼6800 cm-1) indicates a significant electronic change in the excited-state. In deuterated potassium phosphate buffer, the decay time becomes longer (â¼20 ps). The large kinetic isotope effect (KIE) of â¼4 on the decay rate indicates that the stretching modes of the internal H-bond network are slowed by the H/D isotope substitution. The results provide new information on the dynamics of Rif structures and the related processes in aqueous solutions, showing that the internal H-bonding interactions are the ones that govern the ground and excited state properties of Rif but water molecules exert additional stabilization of its zwitterionic form through intermolecular H-bonds, which is responsible for its high antimicrobial activity.
Assuntos
Antibióticos Antituberculose/química , Rifampina/química , Água/química , Soluções Tampão , Deutério/química , Corantes Fluorescentes/química , Hidrogênio/química , Ligação de Hidrogênio , Isótopos , Cloreto de Metileno/química , Fosfatos/química , Compostos de Potássio/químicaRESUMO
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
RESUMO
Clofazimine (CLZ) is an effective antibiotic used against a wide spectrum of Gram-positive bacteria and leprosy. One of its main drawbacks is its poor solubility in water. Silica based materials are used as drug delivery carriers that can increase the solubility of different hydrophobic drugs. Here, we studied how the properties of the silica framework of the mesoporous materials SBA-15, MCM-41, Al-MCM-41, and zeolites NaX, NaY, and HY affect the loading, stability, and distribution of encapsulated CLZ. Time-correlated single-photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM) experiments show the presence of neutral and protonated CLZ (1.3-3.8 ns) and weakly interacting aggregates (0.4-0.9 ns), along with H- and J-type aggregates (<0.1 ns). For the mesoporous and HY zeolite composites, the relative contribution to the overall emission spectra from H-type aggregates is low (<10%), while for the J-type aggregates it becomes higher (~30%). For NaX and NaY the former increased whereas the latter decreased. Although the CLZ@mesoporous composites show higher loading compared to the CLZ@zeolites ones, the behavior of CLZ is not uniform and its dynamics are more heterogeneous across different single mesoporous particles. These results may have implication in the design of silica-based drug carriers for better loading and release mechanisms of hydrophobic drugs.
Assuntos
Clofazimina/administração & dosagem , Clofazimina/química , Portadores de Fármacos , Microscopia de Fluorescência , Dióxido de Silício , Zeolitas , Adsorção , Difusão , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Porosidade , Dióxido de Silício/química , Solubilidade , Análise Espectral , Zeolitas/químicaRESUMO
We report on the encapsulation of the antibiotic clofazimine (CLZ) within the pores of mesoporous silica particles having hydrophilic (CBET value of 137) and more hydrophobic (CBET value of 94 after calcination at 600 °C) surfaces. We studied the effect of pH on the released amount of CLZ in aqueous solutions and observed a maximum at pH 4.1 in correlation with the solubility of the drug. Less release of the drug was observed from the more hydrophobic particles which was attributed to a difference in the affinity of the drug to the carrier particles. Fluorescence lifetime imaging microscopy, emission spectra, and fluorescence lifetimes of single drug loaded particles provided detailed understanding and new knowledge of the physical form of the encapsulated drug and the distribution within the particles. The distribution of CLZ within the particles was independent of the surface chemistry of the particles. The confirmation of CLZ molecules as monomers or aggregates was revealed by controlled removal of the drug with solvent. Additionally, the observed optical "halo effect" in the fluorescent images was interpreted in terms of specific quenching of high concentration of molecules. The emission lifetime experiments suggest stronger interaction of CLZ with the more hydrophobic particles, which is relevant to its release. The results reported in this work demonstrate that tuning the hydrophilicity/hydrophobicity of mesoporous silica particles can be used as a tool to control the release without impacting their loading ability.
Assuntos
Clofazimina/química , Sistemas de Liberação de Medicamentos , Dióxido de Silício/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Fluorescência , CinéticaRESUMO
Enhancing thermal and chemical durability and increasing surface area are two main directions for the construction and improvement of the performance of porous hydrogen-bonded organic frameworks (HOFs). Herein, a hexaazatriphenylene (HAT) derivative that possesses six carboxyaryl groups serves as a suitable building block for the systematic construction of thermally and chemically durable HOFs with high surface area through shape-fitted docking between the HAT cores and interpenetrated three-dimensional network. A HAT derivative with carboxybiphenyl groups forms a stable single-crystalline porous HOF that displays protic solvent durability, even in concentrated HCl, heat resistance up to 305 °C, and a high Brunauer-Emmett-Teller surface area [SA(BET) ] of 1288â m2 g-1 . A single crystal of this HOF displays anisotropic fluorescence, which suggests that it would be applicable to polarized emitters based on robust functional porous materials.
RESUMO
Hydrogen-bonded organic frameworks (HOFs) have drawn unprecedented interest because of their high crystallinity as well as facile process for construction, deconstruction, and reassembly arising from reversible bond formation-dissociation. However, structural fragility and low stability frequently prevent formation of robust HOFs with permanent porosity. Here, we report that hexakis(4-carboxyphenyl)-hexaazatriphenylene (CPHAT) forms three dimensionally networked H-bonded framework CPHAT-1. Interestingly, the activated framework CPHAT-1 a retains not only permanent porosity but single-crystallinity, enabling precise structural characterization and property evaluation on a single crystal. Moreover, CPHAT-1 a retains its framework up to 339 °C or in hot water and in acidic aqueous solution. These results clearly show that even a simple H-bonding motif can be applied for the construction of robust HOFs, which creates a pathway to establish a new class of porous organic frameworks. We also characterize its uptake of gases and I2 , in addition to a detailed photophysical study (spectroscopy and dynamics of proton and charge transfers) of its unit in solution, and of its single crystal under fluorescence microscopy, in which we observed a marked strong anistropy and narrow distribution. The results bring new findings to the area of HOFs and their possible applications in science and technology.
RESUMO
We report on the steady-state and femtosecond-nanosecond (fs-ns) behaviour of 8-hydroxypyrene-1,3,6-trisulfonate (pyranine, HPTS) and its interaction with mesoporous silica based materials (MCM-41) in both solid-state and dichloromethane (DCM) suspensions in the absence and presence of water. In the absence of water, HPTS forms aggregates which are characterized by a broad emission spectrum and multiexponential behavior (τsolid-state/DCM = 120 ps, 600 ps, 2.2 ns). Upon interaction with MCM41, the aggregate population is found to be lower, leading to the formation of adsorbed monomers. In the presence of water (1%), HPTS with and without MCM41 materials in DCM suspensions undergoes an excited-state intermolecular proton-transfer (ESPT) reaction in the protonated form (ROH*) producing a deprotonated species (RO(-)*). The long-time emission decays of the ROH* in different systems in the presence of water are multiexponential, and are analysed using the diffusion-assisted geminate recombination model. The obtained proton-transfer and recombination rate constants for HPTS and HPTS/MCM41 complexes in DCM suspensions in the presence of water are kPT = 13 ns(-1), krec = 7.5 Å ns(-1), and kPT = 5.4 ns(-1), krec = 2.2 Å ns(-1), respectively, The slowing down of both processes in the latter case is explained in terms of specific interactions of the dye and of the water molecules with the silica surface. The ultrafast dynamics (fs-regime) of the HPTS/MCM41 complexes in DCM suspensions, without and with water, shows two components which are assigned to intramolecular vibrational-energy relaxation (IVR) (â¼120 fs vs. â¼0.8 ps), and vibrational relaxation/cooling (VC), and charge transfer (CT) processes (â¼2 ps without water and â¼5 ps with water) of the adsorbed ROH*. Our results provide new knowledge on the interactions and the proton-transfer reaction dynamics of HPTS adsorbed on mesoporous materials.
RESUMO
Understanding of the photocatalytic behaviour of Zr-based MOFs is fundamental for the improved design of new and more efficient photocatalysts. The present work describes steady-state and photodynamical studies on the behavior of two MOFs: Zr-2,6-naphthalene dicarboxylate (Zr-NDC) and Zr-4-amino-2,6-naphthalene dicarboxylate (Zr-NADC, 65% NDC/35% NADC) in dichloromethane (DCM) and N,N-dimethylformamide (DMF) suspensions. In the DMF suspension, the Zr-NDC MOF exhibits excimer formation in 280 ps due to the interactions between neighboring linkers. Using the femtosecond transient absorption (fs-TA) technique we have found that the Zr-NADC MOF exhibits a ligand-to-cluster charge transfer (LCCT) event in â¼170 and <100 fs in DMF and DCM, respectively. The Zr-NDC MOF shows similar LCCT in <100 fs in both solvents. The Zr-NADC MOF in DMF suspension shows an energy transfer (ET) from the excited NDC linkers to the NADC ones in 1.1 ps. Flash photolysis experiments demonstrate dominant radiative electron-hole (e--h+) recombination from two different trap states in 310 ns and 1.3 µs, and 32 ns and 1.0 µs in the photoexcited Zr-NADC and Zr-NDC MOFs in DMF, respectively. Excitation of the NDC linkers in the Zr-NADC and Zr-NDC MOFs in DCM allows for the characterization of the dynamics associated with the charge-separated state and the non-radiative recombination from the trap states (45 ns and 0.3 µs). Direct excitation of the NADC linkers (410 nm) in the Zr-NADC MOF in DCM suspension produces a radiative (e--h+) recombination in 3.5 µs. Further experiments in the presence of electron donor (N,N,N',N'-tetramethyl-p-phenylenediamine, TMPD) and acceptor (methyl viologen, MV2+) molecules corroborate the formation of charge separated states in these MOFs. These findings are relevant for understanding the photocatalytic and photonic behaviours of these MOFs.
RESUMO
This study explores the excitation wavelength and fluence dependence of processes occurring in formamidinium lead triiodide (FAPbI3) film using time-resolved transient absorption and terahertz spectroscopies. The results indicate that second-order processes are responsible for charge carrier recombination at low fluences of the absorbed photons (below 8.4 × 1012 ph per cm2). An increase in fluence leads to the appearance and successive reduction of the time component assigned to the Auger recombination of free charge carriers (240-120 ps). Simultaneously, the bimolecular recombination time decreases from â¼1400 to â¼700 ps. Further increasing the pump fluence produces an exciton population that recombines in 6 ps. The comparison of two characteristic bleaching bands located at 480 and 775 nm provides evidence for the validity of the two valence bands model. Excitation with higher fluences results in a marked difference in the probed dynamics at these bands, reflecting the action of two excited states at the conduction band. Our results demonstrate that a single model cannot be applied in characterizing the perovskite absorber transitions at all pump fluences. These findings are relevant in understanding their operating mechanism under specific experimental conditions, which should differ for perovskite based solar cells, lasing media or photon detectors.
RESUMO
We report on the spectroscopy and photodynamic characterization of Brønsted and Lewis acid sites within solids with respect to the behavior of Nile Red (NR) upon interaction with single- and multi-metal(X)-doped MCM41 materials (X = Ti and/or Al) in dichloromethane (DCM) suspensions. The steady-state results show that the H-bonding ability of doped MCM41-based materials leads to different NR populations (monomers, H- and J-aggregates), wherein their contributions are related to the type of acidic site (Brønsted or Lewis) and percent of acid sites (Si/X atomic ratio) in the silica framework. While at different Al doping contents the interacting NR populations suffer slight modifications, an increase in the Ti content induces a substantial increase in J-aggregate formation. Moreover, the picosecond time-resolved data not only confirm the H-bonding interactions between the X-MCM41 hosts and the different types of NR populations, but also indicate that the S1 deactivation pathways of these populations are connected to the Brønsted and Lewis acidities of the host. The shortening in the emission lifetimes of NR species is significantly associated with increased Lewis acidities (Ti doping). The femtosecond dynamics of loaded NR in single and multiple metal doped MCM41 show that the charge separation (CS) state (formed in â¼200-370 fs) and the subsequent electron injection (EI) process (â¼200 fs) are sensitive to the content and type of acid sites. These observations are based on the time shortening of the CS state formation from â¼350 fs in the NR/Al-MCM41 samples (at 1% of Al) to <200 fs in the NR/Ti-MCM41 composites. For NR/Ti-Al-MCM41 sample, the observed change is directly related to the Ti content. At 1% of Ti the CS is formed in â¼300 fs, whereas at 3% of Ti it decreases to <200 fs. The same behavior is observed for the EI event, wherein its probability is related to the Ti content - higher doping results in a faster EI process (from â¼250 fs to â¼150 fs). Therefore, the interactions of these co-metal-doped MCM41 materials (Ti-Al-MCM41) with NR show competition between the Brønsted (Al doping) and Lewis (Ti doping) acid sites. Our findings may help to achieve a better understanding of the reactivity within metal-doped mesoporous catalysts and could be used in related fields such as drug delivery and nanophotonics using-silica materials.
RESUMO
Despite the unprecedented interest in organic-inorganic metal halide perovskite solar cells, quantitative information on the charge transfer dynamics into selective electrodes is still lacking. In this paper, we report the time scales and mechanisms of electron and hole injection and recombination dynamics at organic PCBM and Spiro-OMeTAD electrode interfaces. On the one hand, hole transfer is complete on the subpicosecond time scale in MAPbI3/Spiro-OMeTAD, and its recombination rate is similar to that in neat MAPbI3. This was found to be due to a high concentration of dark charges, i.e., holes brought about by unintentional p-type doping of MAPbI3. Hence, the total concentration of holes in the perovskite is hardly affected by optical excitation, which manifested as similar decay kinetics. On the other hand, the decay of the photoinduced conductivity in MAPbI3/PCBM is on the time scale of hundreds of picoseconds to several nanoseconds, due to electron injection into PCBM and electron-hole recombination at the interface occurring at similar rates. These results highlight the importance of understanding the role of dark carriers in deconvoluting the complex photophysical processes in these materials. Moreover, optimizing the preparation processes wherein undesired doping is minimized could prompt the use of organic molecules as a more viable electrode substitute for perovskite solar cell devices.
RESUMO
Organic-inorganic hybrid perovskite solar cells have emerged as cost effective efficient light-to-electricity conversion devices. Unravelling the time scale and the mechanisms that govern the charge carrier dynamics is of paramount importance for a clear understanding and further optimization of the perovskite based devices. For the classical FTO/bulk titania blocking layer/mesoporous titania/perovskite/Spiro-OMeTAD (FTO/TPS) cell, further detailed and systematic studies of the ultrafast events related to exciton generation, electron and hole transfer, ultrafast relaxation are still needed. We characterize the initial ultrafast processes attributed to the exciton-perovskite lattice interactions influenced by charge transfer to the electron and hole transporters that precede the exciton diffusion into free charge carriers occurring in the sensitizer. Time-resolved transient absorption studies of the FTO/perovskite and FTO/TPS samples under excitation at different wavelengths and at low fluence 2 (µJ cm(-2)) indicate the sub-picosecond electron and hole injection into titania and Spiro-OMeTAD, respectively. Furthermore, the power-dependent femtosecond transient absorption measurements support the ultrafast charge transfer and show strong Auger-type multiparticle interactions at early times. We reveal that the decays of the internal trap states are the same for both films, while those at surfaces differ. The contribution of the former in the recombination is small, thus increasing the survival probability of the charges in the excited perovskite.
RESUMO
We report on time-resolved fluorescence anisotropy studies of poly(9-vinylcarbazole) (PVK) nanoparticles (NPs) encapsulating Coumarin 153 (C153) and Nile Red (NR). The wobbling-in-a-cone model successfully describes the restricted movements of the encapsulated molecules. For C153-doped PVK NPs, when increasing the C153 content, the diffusional relaxation (τD) times become shorter (τD = 4.6-1.6 ns), following its increased preference for less rigid environments. On the other hand, for NR, τD is affected by the dopant content (τD = 12.2-3.09 ns), thus suggesting a more rigid environment, which is in agreement with its higher ability to interact with the polymer chains. For the two-dye-doped PVK NPs, where the content of one of the trapped guests is kept fixed while varying the concentration of the other one slows down (NR; τR = 0.30-0.37 ns and τD = 3.09-7 ns) or accelerates (C153: τR = 0.14-0.03 ns and τD = 1.57-0.69 ns). This suggests that the guest molecules assume different positions, with C153 being preferentially in the less rigid environment closer to the NP surface, while NR is located in the more rigid ones, closer to the core. We suggest that the dye distribution within PVK NPs is governed by the combination of the Marangoni effect and the consecutive particle swelling. Furthermore, in the two-dye-doped systems, competition for the available less rigid sites is observed upon an increase in the C153 co-dopant content, while in the case of NR as the variable co-dopant this effect is smaller. These findings are relevant for improving our knowledge for a better design of nanophotonic devices based on dye-doped polymer NPs.
RESUMO
Luminescent Mn(II)-based organic-inorganic hybrid halides have drawn attention as potential materials for sensing and photonics applications. Here, the synthesis and characterization of methylammonium (MA) manganese bromide ((MA)nBrxMn(H2O)2, (n = 1, 4 and x = 3, 6)) with different stoichiometries of the organic cation and inorganic counterpart, are reported. While the Mn2+ centers have an octahedral conformation, the two coordinating water molecules are found either in cis (1) or in trans (2) positions. The photophysical behavior of 1 reflects the luminescence of Mn2+ in an octahedral environment. Although Mn2+ in 2 also has octahedral coordination, at room temperature dual emission bands at ≈530 and ≈660 nm are observed, explained in terms of emission from Mn2+ in tetragonally compressed octahedra and self-trapped excitons (STEs), respectively. Above the room temperature, 2 shows quasi-tetrahedral behavior with intense green emission, while at temperatures below 140 K, another STE band emerges at 570 nm. Time-resolved experiments (77-360 K) provide a clear picture of the excited dynamics. 2 shows rising components due to STEs formation equilibrated at room temperature with their precursors. Finally, the potential of these materials for the fabrication of color-tunable down-converted light-emitting diode (LED) and for detecting polar solvent vapors is shown.
RESUMO
The antitumor activity of Ti(IV)-based compounds put them in the spotlight for cancer treatment in the past, but their lack of stability in vivo due to a high rate of hydrolysis has hindered their development as antitumor drugs. As a possible solution for this problem, we have reported a synthesis strategy through which we combined a titanocene fragment, a tridentate ligand, and a long aliphatic chain. This strategy allowed us to generate a titanium compound (Myr-Ti) capable of interacting with albumin, highly stable in water and with cytotoxic activity in tumor cells[1]. Following a similar strategy, now we report the synthesis of a new compound (Myr-TiY) derived from titanocene Y that shows antitumoral activity in a cisplatin resistant model with a 50% inhibitory concentration (IC50) of 41-76 µM. This new compound shows high stability and a strong interaction with human serum albumin. Myr-TiY has a significant antiproliferative and proapoptotic effect on the tested cancer cells and shows potential tumor selectivity when assayed in non-tumor human epithelial cells being more selective (1.3-3.8 times) for tumor cells than cisplatin. These results lead us to think that the described synthesis strategy could be useful to generate compounds for the treatment of both cisplatin-sensitive and cisplatin-resistant cancers.