Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 47(D1): D941-D947, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371878

RESUMO

COSMIC, the Catalogue Of Somatic Mutations In Cancer (https://cancer.sanger.ac.uk) is the most detailed and comprehensive resource for exploring the effect of somatic mutations in human cancer. The latest release, COSMIC v86 (August 2018), includes almost 6 million coding mutations across 1.4 million tumour samples, curated from over 26 000 publications. In addition to coding mutations, COSMIC covers all the genetic mechanisms by which somatic mutations promote cancer, including non-coding mutations, gene fusions, copy-number variants and drug-resistance mutations. COSMIC is primarily hand-curated, ensuring quality, accuracy and descriptive data capture. Building on our manual curation processes, we are introducing new initiatives that allow us to prioritize key genes and diseases, and to react more quickly and comprehensively to new findings in the literature. Alongside improvements to the public website and data-download systems, new functionality in COSMIC-3D allows exploration of mutations within three-dimensional protein structures, their protein structural and functional impacts, and implications for druggability. In parallel with COSMIC's deep and broad variant coverage, the Cancer Gene Census (CGC) describes a curated catalogue of genes driving every form of human cancer. Currently describing 719 genes, the CGC has recently introduced functional descriptions of how each gene drives disease, summarized into the 10 cancer Hallmarks.


Assuntos
Bases de Dados de Ácidos Nucleicos , Mutação , Neoplasias/genética , Genes , Humanos , Conformação Proteica
2.
Nucleic Acids Res ; 45(D1): D777-D783, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899578

RESUMO

COSMIC, the Catalogue of Somatic Mutations in Cancer (http://cancer.sanger.ac.uk) is a high-resolution resource for exploring targets and trends in the genetics of human cancer. Currently the broadest database of mutations in cancer, the information in COSMIC is curated by expert scientists, primarily by scrutinizing large numbers of scientific publications. Over 4 million coding mutations are described in v78 (September 2016), combining genome-wide sequencing results from 28 366 tumours with complete manual curation of 23 489 individual publications focused on 186 key genes and 286 key fusion pairs across all cancers. Molecular profiling of large tumour numbers has also allowed the annotation of more than 13 million non-coding mutations, 18 029 gene fusions, 187 429 genome rearrangements, 1 271 436 abnormal copy number segments, 9 175 462 abnormal expression variants and 7 879 142 differentially methylated CpG dinucleotides. COSMIC now details the genetics of drug resistance, novel somatic gene mutations which allow a tumour to evade therapeutic cancer drugs. Focusing initially on highly characterized drugs and genes, COSMIC v78 contains wide resistance mutation profiles across 20 drugs, detailing the recurrence of 301 unique resistance alleles across 1934 drug-resistant tumours. All information from the COSMIC database is available freely on the COSMIC website.


Assuntos
Bases de Dados Genéticas , Mutação , Neoplasias/genética , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Genoma Humano , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Navegador
3.
Nat Rev Cancer ; 18(11): 696-705, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30293088

RESUMO

The Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) is an expert-curated description of the genes driving human cancer that is used as a standard in cancer genetics across basic research, medical reporting and pharmaceutical development. After a major expansion and complete re-evaluation, the 2018 CGC describes in detail the effect of 719 cancer-driving genes. The recent expansion includes functional and mechanistic descriptions of how each gene contributes to disease generation in terms of the key cancer hallmarks and the impact of mutations on gene and protein function. These functional characteristics depict the extraordinary complexity of cancer biology and suggest multiple cancer-related functions for many genes, which are often highly tissue-dependent or tumour stage-dependent. The 2018 CGC encompasses a second tier, describing an expanding list of genes (currently 145) from more recent cancer studies that show supportive but less detailed indications of a role in cancer.


Assuntos
Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Censos , Humanos , Neoplasias/terapia
4.
Database (Oxford) ; 2011: bar018, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21609966

RESUMO

Catalogue of Somatic Mutations in Cancer (COSMIC) (http://www.sanger.ac.uk/cosmic) is a publicly available resource providing information on somatic mutations implicated in human cancer. Release v51 (January 2011) includes data from just over 19,000 genes, 161,787 coding mutations and 5573 gene fusions, described in more than 577,000 tumour samples. COSMICMart (COSMIC BioMart) provides a flexible way to mine these data and combine somatic mutations with other biological relevant data sets. This article describes the data available in COSMIC along with examples of how to successfully mine and integrate data sets using COSMICMart. DATABASE URL: http://www.sanger.ac.uk/genetics/CGP/cosmic/biomart/martview/.


Assuntos
Mineração de Dados , Bases de Dados Genéticas , Mutação/genética , Neoplasias/genética , Humanos , Ferramenta de Busca
5.
Genome Biol ; 9(5): R78, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18477386

RESUMO

BACKGROUND: Although the human genome sequence was declared complete in 2004, the sequence was interrupted by 341 gaps of which 308 lay in an estimated approximately 28 Mb of euchromatin. While these gaps constitute only approximately 1% of the sequence, knowledge of the full complement of human genes and regulatory elements is incomplete without their sequences. RESULTS: We have used a combination of conventional chromosome walking (aided by the availability of end sequences) in fosmid and bacterial artificial chromosome (BAC) libraries, whole chromosome shotgun sequencing, comparative genome analysis and long PCR to finish 8 of the 11 gaps in the initial chromosome 22 sequence. In addition, we have patched four regions of the initial sequence where the original clones were found to be deleted, or contained a deletion allele of a known gene, with a further 126 kb of new sequence. Over 1.018 Mb of new sequence has been generated to extend into and close the gaps, and we have annotated 16 new or extended gene structures and one pseudogene. CONCLUSION: Thus, we have made significant progress to completing the sequence of the euchromatic regions of human chromosome 22 using a combination of detailed approaches. Our experience suggests that substantial work remains to close the outstanding gaps in the human genome sequence.


Assuntos
Cromossomos Humanos Par 22 , Genoma Humano , Análise de Sequência de DNA , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Humanos
6.
Genome Res ; 13(1): 27-36, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12529303

RESUMO

We report a second-generation gene annotation of human chromosome 22. Using expressed sequence databases, comparative sequence analysis, and experimental verification, we have extended genes, fused previously fragmented structures, and identified new genes. The total length in exons of annotation was increased by 74% over our previously published annotation and includes 546 protein-coding genes and 234 pseudogenes. Thirty-two potential protein-coding annotations are partial copies of other genes, and may represent duplications on an evolutionary path to change or loss of function. We also identified 31 non-protein-coding transcripts, including 16 possible antisense RNAs. By extrapolation, we estimate the human genome contains 29,000-36,000 protein-coding genes, 21,300 pseudogenes, and 1500 antisense RNAs. We suggest that our revised annotation criteria provide a paradigm for future annotation of the human genome.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos Par 22/genética , Genes/genética , Animais , Humanos , Camundongos , Dados de Sequência Molecular
7.
Genome Biol ; 5(10): R84, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15461802

RESUMO

We have developed a systematic approach to generating cDNA clones containing full-length open reading frames (ORFs), exploiting knowledge of gene structure from genomic sequence. Each ORF was amplified by PCR from a pool of primary cDNAs, cloned and confirmed by sequencing. We obtained clones representing 70% of genes on human chromosome 22, whereas searching available cDNA clone collections found at best 48% from a single collection and 60% for all collections combined.


Assuntos
Clonagem Molecular/métodos , Genoma Humano , Genômica/métodos , Fases de Leitura Aberta/genética , Proteoma/genética , Cromossomos Humanos Par 22/genética , Biologia Computacional , DNA Complementar/genética , Bases de Dados Genéticas , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Projetos de Pesquisa , Análise de Sequência de DNA
8.
Hum Genet ; 114(6): 534-40, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15007728

RESUMO

Tylosis (focal non-epidermolytic palmoplantar keratoderma) is associated with the early onset of squamous cell oesophageal cancer in three families. Linkage and haplotype analyses have previously mapped the tylosis with oesophageal cancer ( TOC) locus to a 500-kb region on chromosome 17q25 that has also been implicated in sporadically occurring squamous cell oesophageal cancer. In the current study, 17 additional putative microsatellite markers were identified within this 500-kb region by using sequence data and seven of these were shown to be polymorphic in the UK and US families. In addition, our complete sequence analysis of the non-repetitive parts of the TOC minimal region identified 53 novel and six known single nucleotide polymorphisms (SNPs) in one or both of these families. Further fine mapping of the TOC disease locus by haplotype analysis of the seven polymorphic markers and 21 of the 59 SNPs allowed the reduction of the minimal region to 42.5 kb. One known and two putative genes are located within this region but none of these genes shows tylosis-specific mutations within their protein-coding regions. Alternative mechanisms of disease gene action must therefore be considered.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 17/genética , Neoplasias Esofágicas/genética , Ceratodermia Palmar e Plantar Difusa/genética , Linhagem , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Neoplasias Esofágicas/complicações , Haplótipos/genética , Humanos , Ceratodermia Palmar e Plantar Difusa/complicações , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Reino Unido , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA