Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 109(1): 175-185, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199120

RESUMO

Intracellular uptake of adenosine is essential for optimal erythroid commitment and differentiation of hematopoietic progenitor cells. The role of adenosine signaling is well documented in the regulation of blood flow, cell proliferation, apoptosis, and stem cell regeneration. However, the role of adenosine signaling in hematopoiesis remains unclear. In this study, we show that adenosine signaling inhibits the proliferation of erythroid precursors by activating the p53 pathway and hampers the terminal erythroid maturation. Furthermore, we demonstrate that the activation of specific adenosine receptors promotes myelopoiesis. Overall, our findings indicate that extracellular adenosine could be a new player in the regulation of hematopoiesis.


Assuntos
Adenosina , Eritropoese , Humanos , Adenosina/metabolismo , Hematopoese , Mielopoese , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular
2.
Blood ; 137(26): 3660-3669, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33763700

RESUMO

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.


Assuntos
Antígenos de Grupos Sanguíneos , Deficiências do Desenvolvimento , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Convulsões , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Glicosilfosfatidilinositóis/genética , Humanos , Células K562 , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Convulsões/enzimologia , Convulsões/genética
3.
Blood ; 137(25): 3548-3562, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33690842

RESUMO

The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.


Assuntos
Monofosfato de Adenosina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritropoese , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Animais , Transportador Equilibrativo 1 de Nucleosídeo/genética , Humanos , Camundongos , Camundongos Knockout
4.
Blood ; 137(17): 2285-2298, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33657208

RESUMO

Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.


Assuntos
Preservação de Sangue , Eritrócitos , Animais , Transfusão de Eritrócitos , Cinética , Camundongos , Esferócitos
5.
Transfusion ; 63(3): 610-618, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36744388

RESUMO

BACKGROUND: An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS: Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS: A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION: Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).


Assuntos
Antígenos de Grupos Sanguíneos , Gravidez , Feminino , Humanos , Células HEK293 , Prevalência , Antígenos de Grupos Sanguíneos/genética , Isoanticorpos , Estrutura Molecular
6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674586

RESUMO

Central retinal vein occlusion (CRVO) is a frequent retinal disorder inducing blindness due to the occlusion of the central vein of the retina. The primary cause of the occlusion remains to be identified leading to the lack of treatment. To date, current treatments mainly target the complications of the disease and do not target the primary dysfunctions. CRVO pathophysiology seems to be a multifactorial disorder; several studies did attempt to decipher the cellular and molecular mechanisms underlying the vessel obstruction, but no consensual mechanism has been found. The aim of the current review is to give an overview of CRVO pathophysiology and more precisely the role of the erythroid lineage. The review presents emerging data on red blood cell (RBC) functions besides their role as an oxygen transporter and how disturbance of RBC function could impact the whole vascular system. We also aim to gather new evidence of RBC involvement in CRVO occurrence.


Assuntos
Oclusão da Veia Retiniana , Humanos , Oclusão da Veia Retiniana/etiologia , Retina , Eritrócitos , Cegueira , Oxigênio
7.
Br J Haematol ; 196(5): 1159-1169, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34962643

RESUMO

COVID-19 has compelled scientists to better describe its pathophysiology to find new therapeutic approaches. While risk factors, such as older age, obesity, and diabetes mellitus, suggest a central role of endothelial cells (ECs), autopsies have revealed clots in the pulmonary microvasculature that are rich in neutrophils and DNA traps produced by these cells, called neutrophil extracellular traps (NETs.) Submicron extracellular vesicles, called microparticles (MPs), are described in several diseases as being involved in pro-inflammatory pathways. Therefore, in this study, we analyzed three patient groups: one for which intubation was not necessary, an intubated group, and one group after extubation. In the most severe group, the intubated group, platelet-derived MPs and endothelial cell (EC)-derived MPs exhibited increased concentration and size, when compared to uninfected controls. MPs of intubated COVID-19 patients triggered EC death and overexpression of two adhesion molecules: P-selectin and vascular cell adhesion molecule-1 (VCAM-1). Strikingly, neutrophil adhesion and NET production were increased following incubation with these ECs. Importantly, we also found that preincubation of these COVID-19 MPs with the phosphatidylserine capping endogenous protein, annexin A5, abolished cytotoxicity, P-selectin and VCAM-1 induction, all like increases in neutrophil adhesion and NET release. Taken together, our results reveal that MPs play a key role in COVID-19 pathophysiology and point to a potential therapeutic: annexin A5.


Assuntos
COVID-19/imunologia , Micropartículas Derivadas de Células/imunologia , Células Endoteliais/imunologia , Neutrófilos/imunologia , SARS-CoV-2/imunologia , COVID-19/patologia , COVID-19/terapia , Adesão Celular , Morte Celular , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Células Endoteliais/patologia , Armadilhas Extracelulares/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Intubação , Neutrófilos/patologia , Fosfatidilserinas/imunologia
8.
Blood ; 135(6): 441-448, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31826245

RESUMO

The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3',5'-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Agregação Plaquetária , Plaquetas/citologia , Plaquetas/metabolismo , Sistemas CRISPR-Cas , Células Eritroides/citologia , Células Eritroides/metabolismo , Deleção de Genes , Humanos , Fenótipo
9.
Transfusion ; 61(3): 903-918, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33381865

RESUMO

BACKGROUND: Red blood cells (RBC) change upon hypothermic conservation, and storage for 6 weeks is associated with the short-term clearance of 15% to 20% of transfused RBCs. Metabolic rejuvenation applied to RBCs before transfusion replenishes energetic sources and reverses most storage-related alterations, but how it impacts RBC circulatory functions has not been fully elucidated. STUDY DESIGN AND METHODS: Six RBC units stored under blood bank conditions were analyzed weekly for 6 weeks and rejuvenated on Day 42 with an adenine-inosine-rich solution. Impact of storage and rejuvenation on adenosine triphosphate (ATP) levels, morphology, accumulation of storage-induced microerythrocytes (SMEs), elongation under an osmotic gradient (by LORRCA), hemolysis, and phosphatidylserine (PS) exposure was evaluated. The impact of rejuvenation on filterability and adhesive properties of stored RBCs was also assessed. RESULTS: Rejuvenation of RBCs restored intracellular ATP to almost normal levels and decreased the PS exposure from 2.78% to 0.41%. Upon rejuvenation, the proportion of SME dropped from 28.2% to 9.5%, while the proportion of normal-shaped RBCs (discocytes and echinocytes 1) increased from 47.7% to 67.1%. In LORCCA experiments, rejuvenation did not modify the capacity of RBCs to elongate and induced a reduction in cell volume. In functional tests, rejuvenation increased RBC filterability in a biomimetic splenic filter (+16%) and prevented their adhesion to endothelial cells (-87%). CONCLUSION: Rejuvenation reduces the proportion of morphologically altered and adhesive RBCs that accumulate during storage. Along with the improvement in their filterability, these data show that rejuvenation improves RBC properties related to their capacity to persist in circulation after transfusion.


Assuntos
Trifosfato de Adenosina/metabolismo , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Adenina/farmacologia , Bancos de Sangue , Preservação de Sangue , Criopreservação , Células Endoteliais/metabolismo , Eritrócitos/citologia , Citometria de Fluxo , Hemólise , Humanos , Inosina/farmacologia , Fosfatidilserinas/metabolismo , Rejuvenescimento/fisiologia , Fatores de Tempo
10.
J Biol Chem ; 294(41): 14911-14921, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31413112

RESUMO

Tumor cell migration depends on the interactions of adhesion proteins with the extracellular matrix. Lutheran/basal cell adhesion molecule (Lu/BCAM) promotes tumor cell migration by binding to laminin α5 chain, a subunit of laminins 511 and 521. Lu/BCAM is a type I transmembrane protein with a cytoplasmic domain of 59 (Lu) or 19 (Lu(v13)) amino acids. Here, using an array of techniques, including site-directed mutagenesis, immunoblotting, FRET, and proximity-ligation assays, we show that both Lu and Lu(v13) form homodimers at the cell surface of epithelial cancer cells. We mapped two small-XXX-small motifs in the transmembrane domain as potential sites for monomers docking and identified three cysteines in the cytoplasmic domain as being critical for covalently stabilizing dimers. We further found that Lu dimerization and phosphorylation of its cytoplasmic domain were concomitantly needed to promote cell migration. We conclude that Lu is the critical isoform supporting tumor cell migration on laminin 521 and that the Lu:Lu(v13) ratio at the cell surface may control the balance between cellular firm adhesion and migration.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Laminina/farmacologia , Sistema do Grupo Sanguíneo Lutheran/química , Sistema do Grupo Sanguíneo Lutheran/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Células CACO-2 , Cães , Humanos , Células Madin Darby de Rim Canino , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Estrutura Quaternária de Proteína
11.
Cell Mol Biol Lett ; 25: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042281

RESUMO

BACKGROUND: Precise coordination of cytoskeletal components and dynamic control of cell adhesion and migration are required for crucial cell processes such as differentiation and morphogenesis. We investigated the potential involvement of αII-spectrin, a ubiquitous scaffolding element of the membrane skeleton, in the adhesion and angiogenesis mechanism. METHODS: The cell models were primary human umbilical vein endothelial cells (HUVECs) and a human dermal microvascular endothelial cell line (HMEC-1). After siRNA- and shRNA-mediated knockdown of αII-spectrin, we assessed its expression and that of its partners and adhesion proteins using western blotting. The phenotypes of the control and spectrin-depleted cells were examined using immunofluorescence and video microscopy. Capillary tube formation was assessed using the thick gel Matrigel matrix-based method and a microscope equipped with a thermostatic chamber and a Nikon Biostation System camera. RESULTS: Knockdown of αII-spectrin leads to: modified cell shape; actin cytoskeleton organization with the presence of peripheral actin patches; and decreased formation of stress fibers. Spectrin deficiency affects cell adhesion on laminin and fibronectin and cell motility. This included modification of the localization of adhesion molecules, such as αVß3- and α5-integrins, and organization of adhesion structures, such as focal points. Deficiency of αII-spectrin can also affect the complex mechanism of in vitro capillary tube formation, as demonstrated in a model of angiogenesis. Live imaging revealed that impairment of capillary tube assembly was mainly associated with a significant decrease in cell projection length and stability. αII-spectrin depletion is also associated with significantly decreased expression of three proteins involved in capillary tube formation and assembly: VE-cadherin, MCAM and ß3-integrin. CONCLUSION: Our data confirm the role of αII-spectrin in the control of cell adhesion and spreading. Moreover, our findings further support the participation of αII-spectrin in capillary tube formation in vitro through control of adhesion molecules, such as integrins. This indicates a new function of αII-spectrin in angiogenesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Capilares/metabolismo , Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Espectrina/metabolismo , Antígenos CD/metabolismo , Antígeno CD146/metabolismo , Caderinas/metabolismo , Capilares/crescimento & desenvolvimento , Adesão Celular/genética , Diferenciação Celular/genética , Movimento Celular/genética , Forma Celular , Células Endoteliais/citologia , Fibronectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Cadeias alfa de Integrinas/metabolismo , Integrina beta3/metabolismo , Laminina/metabolismo , Morfogênese/genética , Morfogênese/fisiologia , Neovascularização Fisiológica/genética , RNA Interferente Pequeno , Espectrina/deficiência , Espectrina/genética , Fibras de Estresse/metabolismo
12.
Kidney Int ; 93(2): 390-402, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29054531

RESUMO

Ammonium, stemming from renal ammoniagenesis, is a major urinary proton buffer and is excreted along the collecting duct. This process depends on the concomitant secretion of ammonia by the ammonia channel RhCG and of protons by the vacuolar-type proton-ATPase pump. Thus, urinary ammonium content and urinary acidification are tightly linked. However, mice lacking Rhcg excrete more alkaline urine despite lower urinary ammonium, suggesting an unexpected role of Rhcg in urinary acidification. RhCG and the B1 and B2 proton-ATPase subunits could be co-immunoprecipitated from kidney. In ex vivo microperfused cortical collecting ducts (CCD) proton-ATPase activity was drastically reduced in the absence of Rhcg. Conversely, overexpression of RhCG in HEK293 cells resulted in higher proton secretion rates and increased B1 proton-ATPase mRNA expression. However, in kidneys from Rhcg-/- mice the expression of only B1 and B2 subunits was altered. Immunolocalization of proton-ATPase subunits together with immuno-gold detection of the A proton-ATPase subunit showed similar localization and density of staining in kidneys from Rhcg+/+ and Rhcg-/-mice. In order to test for a reciprocal effect of intercalated cell proton-ATPases on Rhcg activity, we assessed Rhcg and proton-ATPase activities in microperfused CCD from Atp6v1b1-/- mice and showed reduced proton-ATPase activity without altering Rhcg activity. Thus, RhCG and proton-ATPase are located within the same cellular protein complex. RhCG may modulate proton-ATPase function and urinary acidification, whereas proton-ATPase activity does not affect RhCG function. This mechanism may help to coordinate ammonia and proton secretion beyond physicochemical driving forces.


Assuntos
Amônia/urina , Proteínas de Transporte de Cátions/metabolismo , Túbulos Renais Coletores/enzimologia , Glicoproteínas de Membrana/metabolismo , Eliminação Renal , Urina/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/ultraestrutura , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Knockout , Complexos Multiproteicos , Prótons , ATPases Vacuolares Próton-Translocadoras/deficiência , ATPases Vacuolares Próton-Translocadoras/genética
13.
Biophys J ; 112(9): 1863-1873, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494957

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) is a well-known neurotransmitter that is involved in a growing number of functions in peripheral tissues. Recent studies have shown nonpharmacological functions of 5-HT linked to its chemical properties. Indeed, it was reported that 5-HT may, on the one hand, bind lipid membranes and, on the other hand, protect red blood cells through a mechanism independent of its specific receptors. To better understand these underevaluated properties of 5-HT, we combined biochemical, biophysical, and molecular dynamics simulations approaches to characterize, at the molecular level, the antioxidant capacity of 5-HT and its interaction with lipid membranes. To do so, 5-HT was added to red blood cells and lipid membranes bearing different degrees of unsaturation. Our results demonstrate that 5-HT acts as a potent antioxidant and binds with a superior affinity to lipids with unsaturation on both alkyl chains. We show that 5-HT locates at the hydrophobic-hydrophilic interface, below the glycerol group. This interfacial location is stabilized by hydrogen bonds between the 5-HT hydroxyl group and lipid headgroups and allows 5-HT to intercept reactive oxygen species, preventing membrane oxidation. Experimental and molecular dynamics simulations using membrane enriched with oxidized lipids converge to further reveal that 5-HT contributes to the termination of lipid peroxidation by direct interaction with active groups of these lipids and could also contribute to limit the production of new radicals. Taken together, our results identify 5-HT as a potent inhibitor of lipid peroxidation and offer a different perspective on the role of this pleiotropic molecule.


Assuntos
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Serotonina/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/química , Membrana Celular/química , Eritrócitos/química , Eritrócitos/metabolismo , Citometria de Fluxo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peroxidação de Lipídeos , Lipossomos/química , Lipossomos/metabolismo , Microscopia Confocal , Simulação de Dinâmica Molecular , Oxirredução , Serotonina/administração & dosagem , Serotonina/química
14.
Haematologica ; 102(7): 1161-1172, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28385784

RESUMO

Although the primary origin of sickle cell disease is a hemoglobin disorder, many types of cells contribute considerably to the pathophysiology of the disease. The adhesion of neutrophils to activated endothelium is critical in the pathophysiology of sickle cell disease and targeting neutrophils and their interactions with endothelium represents an important opportunity for the development of new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and investigated the involvement of the endothelin receptors in the interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on the mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor, strongly influences neutrophil recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils have functional ETB receptors with calcium signaling capability, leading to increased adhesion to the endothelium through effects on both endothelial cells and neutrophils. Intact ETB function was found to be required for tumor necrosis factor α-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1, which may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptors, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises in sickle cell patients.


Assuntos
Anemia Falciforme/metabolismo , Adesão Celular , Endotélio Vascular/metabolismo , Neutrófilos/metabolismo , Receptor de Endotelina B/metabolismo , Adolescente , Anemia Falciforme/sangue , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Endotelina-1/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Contagem de Leucócitos , Migração e Rolagem de Leucócitos , Antígeno de Macrófago 1/metabolismo , Camundongos , Ativação de Neutrófilo , Neutrófilos/imunologia , Receptor de Endotelina A/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/imunologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Transfusion ; 57(4): 1007-1018, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28150311

RESUMO

BACKGROUND: Storage lesion may explain the rapid clearance of up to 25% of transfused red blood cells (RBCs) in recipients. Several alterations affect stored RBC but a quantitative, whole cell-based predictor of transfusion yield is lacking. Because RBCs with reduced surface area are retained by the spleen, we quantified changes in RBC dimensions during storage. STUDY DESIGN AND METHODS: Using imaging flow cytometry we observed the dimension and morphology of RBCs upon storage, along with that of conventional biochemical and mechanical markers of storage lesion. We then validated these findings using differential interference contrast (DIC) microscopy and quantified the accumulation of microparticles (MPs). RESULTS: Mean projected surface area of the whole RBC population decreased from 72.4 to 68.4 µm2 , a change resulting from the appearance of a well-demarcated subpopulation of RBCs with reduced mean projected surface (58 µm2 , 15.2%-19.9% reduction). These "small RBCs" accounted for 4.9 and 23.6% of all RBCs on Days 3 and 42 of storage, respectively. DIC microscopy confirmed that small RBCs had shifted upon storage from discocytes to echinocytes III, spheroechinocytes, and spherocytes. Glycophorin A-positive MPs and small RBCs appeared after similar kinetics. CONCLUSION: The reduction in surface area of small RBCs is expected to induce their retention by the spleen. We propose that small RBCs generated by MP-induced membrane loss are preferentially cleared from the circulation shortly after transfusion of long-stored blood. Their operator-independent quantification using imaging flow cytometry may provide a marker of storage lesion potentially predictive of transfusion yield.


Assuntos
Preservação de Sangue , Micropartículas Derivadas de Células , Citometria de Fluxo/métodos , Esferócitos/citologia , Biomarcadores/sangue , Feminino , Humanos , Cinética , Masculino , Esferócitos/metabolismo , Fatores de Tempo
16.
J Biol Chem ; 290(11): 6925-36, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25616663

RESUMO

The renal ammonium transporter RhBG and anion exchanger 1 kAE1 colocalize in the basolateral domain of α-intercalated cells in the distal nephron. Although we have previously shown that RhBG is linked to the spectrin-based skeleton through ankyrin-G and that its NH3 transport activity is dependent on this association, there is no evidence for an interaction of kAE1 with this adaptor protein. We report here that the kAE1 cytoplasmic N terminus actually binds to ankyrin-G, both in yeast two-hybrid analysis and by coimmunoprecipitation in situ in HEK293 cells expressing recombinant kAE1. A site-directed mutagenesis study allowed the identification of three dispersed regions on kAE1 molecule linking the third and fourth repeat domains of ankyrin-G. One secondary docking site corresponds to a major interacting loop of the erythroid anion exchanger 1 (eAE1) with ankyrin-R, whereas the main binding region of kAE1 does not encompass any eAE1 determinant. Stopped flow spectrofluorometry analysis of recombinant HEK293 cells revealed that the Cl(-)/HCO3 (-) exchange activity of a kAE1 protein mutated on the ankyrin-G binding site was abolished. This disruption impaired plasma membrane expression of kAE1 leading to total retention on cytoplasmic structures in polarized epithelial Madin-Darby canine kidney cell transfectants. kAE1 also directly interacts with RhBG without affecting its surface expression and NH3 transport function. This is the first description of a structural and functional RhBG·kAE1·ankyrin-G complex at the plasma membrane of kidney epithelial cells, comparable with the well known Rh·eAE1·ankyrin-R complex in the red blood cell membrane. This renal complex could participate in the regulation of acid-base homeostasis.


Assuntos
Compostos de Amônio/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Anquirinas/metabolismo , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Rim/citologia , Proteínas de Membrana Transportadoras/metabolismo , Animais , Proteína 1 de Troca de Ânion do Eritrócito/análise , Proteína 1 de Troca de Ânion do Eritrócito/genética , Anquirinas/análise , Sítios de Ligação , Linhagem Celular , Cães , Glicoproteínas/análise , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/análise , Mutagênese Sítio-Dirigida , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
17.
J Biol Chem ; 289(16): 11512-11521, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24616094

RESUMO

Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4ß1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.


Assuntos
Anemia Falciforme/metabolismo , Antidrepanocíticos/farmacologia , Moléculas de Adesão Celular/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/biossíntese , Células Endoteliais/metabolismo , Hidroxiureia/farmacologia , Sistema do Grupo Sanguíneo Lutheran/metabolismo , Reticulócitos/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Anemia Falciforme/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Moléculas de Adesão Celular/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Células Endoteliais/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Células K562 , Sistema do Grupo Sanguíneo Lutheran/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Reticulócitos/patologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
18.
Br J Haematol ; 171(5): 862-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26455906

RESUMO

Protein 4.1R plays an important role in maintaining the mechanical properties of the erythrocyte membrane. We analysed the expression of Kell blood group protein in erythrocytes from a patient with hereditary elliptocytosis associated with complete 4.1R deficiency (4.1(-) HE). Flow cytometry and Western blot analyses revealed a severe reduction of Kell. In vitro pull down and co-immunoprecipitation experiments from erythrocyte membranes showed a direct interaction between Kell and 4.1R. Using different recombinant domains of 4.1R and the cytoplasmic domain of Kell, we demonstrated that the R(46) R motif in the juxta-membrane region of Kell binds to lobe B of the 4.1R FERM domain. We also observed that 4.1R deficiency is associated with a reduction of XK and DARC (also termed ACKR1) proteins, the absence of the glycosylated form of the urea transporter B and a slight decrease of band 3. The functional alteration of the 4.1(-) HE erythrocyte membranes was also determined by measuring various transport activities. We documented a slower rate of HCO3 (-) /Cl(-) exchange, but normal water and ammonia transport across erythrocyte membrane in the absence of 4.1. These findings provide novel insights into the structural organization of blood group antigen proteins into the 4.1R complex of the human red cell membrane.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Sistema do Grupo Sanguíneo de Kell/metabolismo , Proteínas de Membrana/metabolismo , Adolescente , Anticorpos/metabolismo , Proteínas do Citoesqueleto/deficiência , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/imunologia , Feminino , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana Transportadoras/fisiologia , Ligação Proteica/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo
19.
Blood ; 121(4): 658-65, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23160466

RESUMO

Polycythemia vera (PV) is characterized by an increased RBC mass, spontaneous erythroid colony formation, and the JAK2V617F mutation. PV is associated with a high risk of mesenteric and cerebral thrombosis. PV RBC adhesion to endothelial laminin is increased and mediated by phosphorylated erythroid Lu/BCAM. In the present work, we investigated the mechanism responsible for Lu/BCAM phosphorylation in the presence of JAK2V617F using HEL and BaF3 cell lines as well as RBCs from patients with PV. High levels of Rap1-GTP were found in HEL and BaF3 cells expressing JAK2V617F compared with BaF3 cells with wild-type JAK2. This finding was associated with increased Akt activity, Lu/BCAM phosphorylation, and cell adhesion to laminin that were inhibited by the dominant-negative Rap1S17N or by the specific Rap1 inhibitor GGTI-298. Surprisingly, knocking-down EpoR in HEL cells did not alter Akt activity or cell adhesion to laminin. Our findings reveal a novel EpoR-independent Rap1/Akt signaling pathway that is activated by JAK2V617F in circulating PV RBCs and responsible for Lu/BCAM activation. This new characteristic of JAK2V617F could play a critical role in initiating abnormal interactions among circulating and endothelial cells in patients with PV.


Assuntos
Moléculas de Adesão Celular/metabolismo , Eritrócitos/metabolismo , Janus Quinase 2/metabolismo , Sistema do Grupo Sanguíneo Lutheran/metabolismo , Policitemia Vera/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Eritropoetina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Feminino , Humanos , Janus Quinase 2/genética , Laminina/metabolismo , Sistema do Grupo Sanguíneo Lutheran/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação , Policitemia Vera/genética , Transdução de Sinais
20.
Blood ; 121(3): 546-55, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23212518

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder caused by glucocerebrosidase deficiency. It is notably characterized by splenomegaly, complex skeletal involvement, ischemic events of the spleen and bones, and the accumulation of Gaucher cells in several organs. We hypothesized that red blood cells (RBCs) might be involved in some features of GD and studied the adhesive and hemorheologic properties of RBCs from GD patients. Hemorheologic analyses revealed enhanced blood viscosity, increased aggregation, and disaggregation threshold of GD RBCs compared with control (CTR) RBCs. GD RBCs also exhibited frequent morphologic abnormalities and lower deformability. Under physiologic flow conditions, GD RBCs adhered more strongly to human microvascular endothelial cells and to laminin than CTR. We showed that Lu/BCAM, the unique erythroid laminin receptor, is overexpressed and highly phosphorylated in GD RBCs, and may play a major role in the adhesion process. The demonstration that GD RBCs have abnormal rheologic and adhesion properties suggests that they may trigger ischemic events in GD, and possibly phagocytosis by macrophages, leading to the appearance of pathogenic Gaucher cells.


Assuntos
Eritrócitos/patologia , Eritrócitos/fisiologia , Doença de Gaucher/patologia , Doença de Gaucher/fisiopatologia , Adulto , Adesão Celular/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Eritrócitos Anormais/patologia , Eritrócitos Anormais/fisiologia , Feminino , Humanos , Laminina/metabolismo , Macrófagos/patologia , Macrófagos/fisiologia , Masculino , Oxirredutases/metabolismo , Fagocitose/fisiologia , Fosforilação/fisiologia , Reologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA