Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 18(1): e1010002, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986144

RESUMO

A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Células Germinativas/fisiologia , Animais , Blastoderma , Padronização Corporal , Diferenciação Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Feminino , Células Germinativas/metabolismo , Masculino , Transdução de Sinais
2.
Genetics ; 226(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38345426

RESUMO

In the fruit fly Drosophila melanogaster, two cells in a cyst of 16 interconnected cells have the potential to become the oocyte, but only one of these will assume an oocyte fate as the cysts transition through regions 2a and 2b of the germarium. The mechanism of specification depends on a polarized microtubule network, a dynein dependent Egl:BicD mRNA cargo complex, a special membranous structure called the fusome and its associated proteins, and the translational regulator orb. In this work, we have investigated the role of orb and the fusome in oocyte specification. We show here that specification is a stepwise process. Initially, orb mRNAs accumulate in the two pro-oocytes in close association with the fusome. This association is accompanied by the activation of the orb autoregulatory loop, generating high levels of Orb. Subsequently, orb mRNAs become enriched in only one of the pro-oocytes, the presumptive oocyte, and this is followed, with a delay, by Orb localization to the oocyte. We find that fusome association of orb mRNAs is essential for oocyte specification in the germarium, is mediated by the orb 3' UTR, and requires Orb protein. We also show that the microtubule minus end binding protein Patronin functions downstream of orb in oocyte specification. Finally, in contrast to a previously proposed model for oocyte selection, we find that the choice of which pro-oocyte becomes the oocyte does not seem to be predetermined by the amount of fusome material in these two cells, but instead depends upon a competition for orb gene products.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Oogênese/genética
3.
Front Cell Dev Biol ; 12: 1358583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827528

RESUMO

Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications (CNA). CNA are genetic alterations that are increasingly becoming relevant to breast oncology clinical practice. Here we identify CNA in metastatic breast tumor samples using publicly available datasets and characterize their expression and function using a metastatic mouse model of breast cancer. Our findings demonstrate that our organoid generation can be implemented to study clinically relevant features that reflect the genetic heterogeneity of individual tumors.

4.
Elife ; 122023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598809

RESUMO

In Drosophila melanogaster embryos, somatic versus germline identity is the first cell fate decision. Zygotic genome activation (ZGA) orchestrates regionalized gene expression, imparting specific identity on somatic cells. ZGA begins with a minor wave that commences at nuclear cycle (NC)8 under the guidance of chromatin accessibility factors (Zelda, CLAMP, GAF), followed by the major wave during NC14. By contrast, primordial germ cell (PGC) specification requires maternally deposited and posteriorly anchored germline determinants. This is accomplished by a centrosome coordinated release and sequestration of germ plasm during the precocious cellularization of PGCs in NC10. Here, we report a novel requirement for Zelda and CLAMP during the establishment of the germline/soma distinction. When their activity is compromised, PGC determinants are not properly sequestered, and specification is disrupted. Conversely, the spreading of PGC determinants from the posterior pole adversely influences transcription in the neighboring somatic nuclei. These reciprocal aberrations can be correlated with defects in centrosome duplication/separation that are known to induce inappropriate transmission of the germ plasm. Interestingly, consistent with the ability of bone morphogenetic protein (BMP) signaling to influence specification of embryonic PGCs, reduction in the transcript levels of a BMP family ligand, decapentaplegic (dpp), is exacerbated at the posterior pole.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Zigoto/metabolismo , Células Germinativas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
5.
J Vis Exp ; (189)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36440890

RESUMO

Organoids are a reliable method for modeling organ tissue due to their self-organizing properties and retention of function and architecture after propagation from primary tissue or stem cells. This method of organoid generation forgoes single-cell differentiation through multiple passages and instead uses differential centrifugation to isolate mammary epithelial organoids from mechanically and enzymatically dissociated tissues. This protocol provides a streamlined technique for rapidly producing small and large epithelial organoids from both mouse and human mammary tissue in addition to techniques for organoid embedding in collagen and basement extracellular matrix. Furthermore, instructions for in-gel fixation and immunofluorescent staining are provided for the purpose of visualizing organoid morphology and density. These methodologies are suitable for myriad downstream analyses, such as co-culturing with immune cells and ex vivo metastasis modeling via collagen invasion assay. These analyses serve to better elucidate cell-cell behavior and create a more complete understanding of interactions within the tumor microenvironment.


Assuntos
Neoplasias , Organoides , Humanos , Camundongos , Animais , Diagnóstico por Imagem , Mama , Colágeno , Microambiente Tumoral
6.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849887

RESUMO

Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here, we have explored the novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA. CLAMP binds thousands of sites genome-wide throughout early embryogenesis. Interestingly, CLAMP relocates to target promoter sequences across the genome when ZGA is initiated. Although there is a considerable overlap between CLAMP and Zelda binding sites, the proteins display distinct temporal dynamics. To assess whether CLAMP occupancy affects gene expression, we analyzed transcriptomes of embryos zygotically compromised for either clamp or zelda and found that transcript levels of many zygotically activated genes are similarly affected. Importantly, compromising either clamp or zelda disrupted the expression of critical segmentation and sex determination genes bound by CLAMP (and Zelda). Furthermore, clamp knockdown embryos recapitulate other phenotypes observed in Zelda-depleted embryos, including nuclear division defects, centrosome aberrations, and a disorganized actomyosin network. Based on these data, we propose that CLAMP acts in concert with Zelda to regulate early zygotic transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Zigoto/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Zigoto/crescimento & desenvolvimento
7.
Elife ; 102021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342574

RESUMO

During the essential and conserved process of zygotic genome activation (ZGA), chromatin accessibility must increase to promote transcription. Drosophila is a well-established model for defining mechanisms that drive ZGA. Zelda (ZLD) is a key pioneer transcription factor (TF) that promotes ZGA in the Drosophila embryo. However, many genomic loci that contain GA-rich motifs become accessible during ZGA independent of ZLD. Therefore, we hypothesized that other early TFs that function with ZLD have not yet been identified, especially those that are capable of binding to GA-rich motifs such as chromatin-linked adaptor for male-specific lethal (MSL) proteins (CLAMP). Here, we demonstrate that Drosophila embryonic development requires maternal CLAMP to (1) activate zygotic transcription; (2) increase chromatin accessibility at promoters of specific genes that often encode other essential TFs; and (3) enhance chromatin accessibility and facilitate ZLD occupancy at a subset of key embryonic promoters. Thus, CLAMP functions as a pioneer factor that plays a targeted yet essential role in ZGA.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de Inseto , Proteínas Nucleares/genética , Ativação Transcricional , Animais , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Zigoto/metabolismo
8.
Elife ; 102021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459591

RESUMO

Transcriptional quiescence, an evolutionarily conserved trait, distinguishes the embryonic primordial germ cells (PGCs) from their somatic neighbors. In Drosophila melanogaster, PGCs from embryos maternally compromised for germ cell-less (gcl) misexpress somatic genes, possibly resulting in PGC loss. Recent studies documented a requirement for Gcl during proteolytic degradation of the terminal patterning determinant, Torso receptor. Here we demonstrate that the somatic determinant of female fate, Sex-lethal (Sxl), is a biologically relevant transcriptional target of Gcl. Underscoring the significance of transcriptional silencing mediated by Gcl, ectopic expression of a degradation-resistant form of Torso (torsoDeg) can activate Sxl transcription in PGCs, whereas simultaneous loss of torso-like (tsl) reinstates the quiescent status of gcl PGCs. Intriguingly, like gcl mutants, embryos derived from mothers expressing torsoDeg in the germline display aberrant spreading of pole plasm RNAs, suggesting that mutual antagonism between Gcl and Torso ensures the controlled release of germ-plasm underlying the germline/soma distinction.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Ligação a RNA/genética , Receptores Proteína Tirosina Quinases/genética , Processos de Determinação Sexual , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/embriologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas de Ligação a RNA/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transcrição Gênica
9.
Toxicol Sci ; 161(1): 196-206, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294139

RESUMO

Amphibian metamorphosis is driven by thyroid hormone (TH). We used prometamorphic tadpoles and a cell line of the African clawed frog (Xenopus laevis) to examine immediate effects of dioxin exposure on TH. Gene expression patterns suggest cross-talk between the thyroid hormone receptor (TR) and aryl hydrocarbon receptor (AHR) signaling pathways. In XLK-WG cells, expression of Cytochrome P450 1A6 (cyp1A6), an AHR target, was induced 1000-fold by 100 nM TCDD (2, 3, 7, 8 tetrachlorodibenzo-p-dioxin). Krüppel-Like Factor 9 (klf9), the first gene induced in a cascade of TH responses tied to metamorphosis, was upregulated over 5-fold by 50 nM triiodothyronine (T3) and 2-fold by dioxin. Co-exposure to T3 and TCDD boosted both responses, further inducing cyp1A6 by 75% and klf9 about 60%. Additional canonical targets of each receptor, including trßa and trßb (TR) and udpgt1a (AHR) responded similarly. Induction of TH targets by TCDD in XLK-WG cells predicts that exposure could speed metamorphosis. We tested this hypothesis in two remodeling events: tail resorption and hind limb growth. Resorption of ex vivo cultured tails was accelerated by 10 nM T3, while a modest increase in resorption by 100 nM TCDD lacked statistical significance. Hind limbs doubled in length over four days following 1 nM T3 treatment, but limb length was unaffected by 100 nM TCDD. TCDD co-exposure reduced the T3 effect by nearly 40%, despite TCDD induction of klf9 in whole tadpoles, alone or with T3. These results suggest that tissue-specific TCDD effects limit or reverse the increased metamorphosis rate predicted by klf9 induction.


Assuntos
Disruptores Endócrinos/toxicidade , Larva/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Hormônios Tireóideos/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Larva/metabolismo , Metamorfose Biológica/genética , Receptor Cross-Talk/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/farmacologia , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA