Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Learn Mem ; 26(10): 1-12, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527185

RESUMO

Honeybees are a standard model for the study of appetitive learning and memory. Yet, fewer attempts have been performed to characterize aversive learning and memory in this insect and uncover its molecular underpinnings. Here, we took advantage of the positive phototactic behavior of bees kept away from the hive in a dark environment and established a passive-avoidance task in which they had to suppress positive phototaxis. Bees placed in a two-compartment box learned to inhibit spontaneous attraction to a compartment illuminated with blue light by associating and entering into that chamber with shock delivery. Inhibitory learning resulted in an avoidance memory that could be retrieved 24 h after training and that was specific to the punished blue light. The memory was mainly operant but involved a Pavlovian component linking the blue light and the shock. Coupling conditioning with transcriptional analyses in key areas of the brain showed that inhibitory learning of phototaxis leads to an up-regulation of the dopaminergic receptor gene Amdop1 in the calyces of the mushroom bodies, consistently with the role of dopamine signaling in different forms of aversive learning in insects. Our results thus introduce new perspectives for uncovering further cellular and molecular underpinnings of aversive learning and memory in bees. Overall, they represent an important step toward comparative learning studies between the appetitive and the aversive frameworks.


Assuntos
Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Abelhas/fisiologia , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Fototaxia/fisiologia , Animais , Inibição Psicológica
2.
Proc Natl Acad Sci U S A ; 113(5): 1303-8, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787857

RESUMO

The nests of social insects are not only impressive because of their sheer complexity but also because they are built from individuals whose work is not centrally coordinated. A key question is how groups of insects coordinate their building actions. Here, we use a combination of experimental and modeling approaches to investigate nest construction in the ant Lasius niger. We quantify the construction dynamics and the 3D structures built by ants. Then, we characterize individual behaviors and the interactions of ants with the structures they build. We show that two main interactions are involved in the coordination of building actions: (i) a stigmergic-based interaction that controls the amplification of depositions at some locations and is attributable to a pheromone added by ants to the building material; and (ii) a template-based interaction in which ants use their body size as a cue to control the height at which they start to build a roof from existing pillars. We then develop a 3D stochastic model based on these individual behaviors to analyze the effect of pheromone presence and strength on construction dynamics. We show that the model can quantitatively reproduce key features of construction dynamics, including a large-scale pattern of regularly spaced pillars, the formation and merging of caps over the pillars, and the remodeling of built structures. Finally, our model suggests that the lifetime of the pheromone is a highly influential parameter that controls the growth and form of nest architecture.


Assuntos
Formigas/fisiologia , Animais , Modelos Teóricos
3.
Proc Natl Acad Sci U S A ; 109(19): 7481-6, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22517740

RESUMO

Sorting objects and events into categories and concepts is a fundamental cognitive capacity that reduces the cost of learning every particular situation encountered in our daily lives. Relational concepts such as "same," "different," "better than," or "larger than"--among others--are essential in human cognition because they allow highly efficient classifying of events irrespective of physical similarity. Mastering a relational concept involves encoding a relationship by the brain independently of the physical objects linked by the relation and is, therefore, consistent with abstraction capacities. Processing several concepts at a time presupposes an even higher level of cognitive sophistication that is not expected in an invertebrate. We found that the miniature brains of honey bees rapidly learn to master two abstract concepts simultaneously, one based on spatial relationships (above/below and right/left) and another based on the perception of difference. Bees that learned to classify visual targets by using this dual concept transferred their choices to unknown stimuli that offered a best match in terms of dual-concept availability: their components presented the appropriate spatial relationship and differed from one another. This study reveals a surprising facility of brains to extract abstract concepts from a set of complex pictures and to combine them in a rule for subsequent choices. This finding thus provides excellent opportunities for understanding how cognitive processing is achieved by relatively simple neural architectures.


Assuntos
Abelhas/fisiologia , Encéfalo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Análise de Variância , Animais , Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , Aprendizagem em Labirinto/fisiologia
4.
PLoS Comput Biol ; 9(3): e1002903, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555202

RESUMO

Interactions between individuals and the structure of their environment play a crucial role in shaping self-organized collective behaviors. Recent studies have shown that ants crossing asymmetrical bifurcations in a network of galleries tend to follow the branch that deviates the least from their incoming direction. At the collective level, the combination of this tendency and the pheromone-based recruitment results in a greater likelihood of selecting the shortest path between the colony's nest and a food source in a network containing asymmetrical bifurcations. It was not clear however what the origin of this behavioral bias is. Here we propose that it results from a simple interaction between the behavior of the ants and the geometry of the network, and that it does not require the ability to measure the angle of the bifurcation. We tested this hypothesis using groups of ant-like robots whose perceptual and cognitive abilities can be fully specified. We programmed them only to lay down and follow light trails, avoid obstacles and move according to a correlated random walk, but not to use more sophisticated orientation methods. We recorded the behavior of the robots in networks of galleries presenting either only symmetrical bifurcations or a combination of symmetrical and asymmetrical bifurcations. Individual robots displayed the same pattern of branch choice as individual ants when crossing a bifurcation, suggesting that ants do not actually measure the geometry of the bifurcations when travelling along a pheromone trail. Finally at the collective level, the group of robots was more likely to select one of the possible shorter paths between two designated areas when moving in an asymmetrical network, as observed in ants. This study reveals the importance of the shape of trail networks for foraging in ants and emphasizes the underestimated role of the geometrical properties of transportation networks in general.


Assuntos
Comunicação Animal , Formigas/fisiologia , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Modelos Biológicos , Robótica/instrumentação , Animais , Comportamento Alimentar , Feromônios
5.
Proc Biol Sci ; 276(1668): 2755-62, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19439442

RESUMO

In animal societies as well as in human crowds, many observed collective behaviours result from self-organized processes based on local interactions among individuals. However, models of crowd dynamics are still lacking a systematic individual-level experimental verification, and the local mechanisms underlying the formation of collective patterns are not yet known in detail. We have conducted a set of well-controlled experiments with pedestrians performing simple avoidance tasks in order to determine the laws ruling their behaviour during interactions. The analysis of the large trajectory dataset was used to compute a behavioural map that describes the average change of the direction and speed of a pedestrian for various interaction distances and angles. The experimental results reveal features of the decision process when pedestrians choose the side on which they evade, and show a side preference that is amplified by mutual interactions. The predictions of a binary interaction model based on the above findings were then compared with bidirectional flows of people recorded in a crowded street. Simulations generate two asymmetric lanes with opposite directions of motion, in quantitative agreement with our empirical observations. The knowledge of pedestrian behavioural laws is an important step ahead in the understanding of the underlying dynamics of crowd behaviour and allows for reliable predictions of collective pedestrian movements under natural conditions.


Assuntos
Comportamento Social , Comportamento Espacial , Humanos , Modelos Teóricos
6.
Sci Rep ; 8(1): 5800, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643414

RESUMO

Lymphocytes alternate between phases of individual migration across tissues and phases of clustering during activation and function. The range of lymphocyte motility behaviors and the identity of the factors that govern them remain elusive. To explore this point, we here collected unprecedented statistics pertaining to cell displacements, cell:matrix and cell:cell interactions using a model B cell line as well as primary human B lymphocytes. At low cell density, individual B lymphocytes displayed a high heterogeneity in their speed and diffusivity. Beyond this intrinsic variability, B lymphocytes adapted their motility to the composition of extra-cellular matrix, adopting slow persistent walks over collagen IV and quick Brownian walks over fibronectin. At high cell density, collagen IV favored the self-assembly of B lymphocytes into clusters endowed with collective coordination, while fibronectin stimulated individual motility. We show that this behavioral plasticity is controlled by acto-myosin dependent adhesive and Arp2/3-dependent protrusive actin pools, respectively. Our study reveals the adaptive nature of B lymphocyte motility and group dynamics, which are shaped by an interplay between and cell:matrix and cell:cell interactions.


Assuntos
Linfócitos B/fisiologia , Comunicação Celular , Movimento Celular , Junções Célula-Matriz , Linfócitos B/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Fibronectinas/metabolismo , Humanos
7.
Curr Biol ; 24(5): 561-7, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24560579

RESUMO

Olfactory systems dynamically encode odor information in the nervous system. Insects constitute a well-established model for the study of the neural processes underlying olfactory perception. In insects, odors are detected by sensory neurons located in the antennae, whose axons project to a primary processing center, the antennal lobe. There, the olfactory message is reshaped and further conveyed to higher-order centers, the mushroom bodies and the lateral horn. Previous work has intensively analyzed the principles of olfactory processing in the antennal lobe and in the mushroom bodies. However, how the lateral horn participates in olfactory coding remains comparatively more enigmatic. We studied odor representation at the input to the lateral horn of the honeybee, a social insect that relies on both floral odors for foraging and pheromones for social communication. Using in vivo calcium imaging, we show consistent neural activity in the honeybee lateral horn upon stimulation with both floral volatiles and social pheromones. Recordings reveal odor-specific maps in this brain region as stimulations with the same odorant elicit more similar spatial activity patterns than stimulations with different odorants. Odor-similarity relationships are mostly conserved between antennal lobe and lateral horn, so that odor maps recorded in the lateral horn allow predicting bees' behavioral responses to floral odorants. In addition, a clear segregation of odorants based on pheromone type is found in both structures. The lateral horn thus contains an odor-specific map with distinct representations for the different bee pheromones, a prerequisite for eliciting specific behaviors.


Assuntos
Antenas de Artrópodes/fisiologia , Abelhas/fisiologia , Aldeídos , Animais , Cálcio/análise , Flores/química , Hexanóis , Odorantes , Condutos Olfatórios/fisiologia , Feromônios , Células Receptoras Sensoriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA