Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 40(10): e104566, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33764556

RESUMO

The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context-dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1-dependent phosphorylation of proteins associated with single-strand DNA (ssDNA) transactions, including the ssDNA-binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1-Top3-Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1-dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide-binding domains of Dpb11 strongly impairs HR-mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper-resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper-resection highlights the multi-faceted action of this kinase in the coordination of checkpoint signaling and HR-mediated DNA repair.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , Reparo do DNA/fisiologia , Recombinação Homóloga/genética , Recombinação Homóloga/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391183

RESUMO

Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.


Assuntos
Infertilidade Masculina , Meiose , Animais , Humanos , Masculino , Camundongos , Alelos , Proteínas de Transporte/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Infertilidade Masculina/genética , Proteínas Nucleares/genética , Cromossomos Sexuais
3.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37398453

RESUMO

Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1 B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1 B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.

4.
Elife ; 112022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133275

RESUMO

The phosphatidylinositol 3' kinase (PI3K)-related kinase ATR is crucial for mammalian meiosis. ATR promotes meiotic progression by coordinating key events in DNA repair, meiotic sex chromosome inactivation (MSCI), and checkpoint-dependent quality control during meiotic prophase I. Despite its central roles in meiosis, the ATR-dependent meiotic signaling network remains largely unknown. Here, we used phosphoproteomics to define ATR signaling events in testes from mice following chemical and genetic ablation of ATR signaling. Quantitative analysis of phosphoproteomes obtained after germ cell-specific genetic ablation of the ATR activating 9-1-1 complex or treatment with ATR inhibitor identified over 14,000 phosphorylation sites from testes samples, of which 401 phosphorylation sites were found to be dependent on both the 9-1-1 complex and ATR. Our analyses identified ATR-dependent phosphorylation events in crucial DNA damage signaling and DNA repair proteins including TOPBP1, SMC3, MDC1, RAD50, and SLX4. Importantly, we identified ATR and RAD1-dependent phosphorylation events in proteins involved in mRNA regulatory processes, including SETX and RANBP3, whose localization to the sex body was lost upon ATR inhibition. In addition to identifying the expected ATR-targeted S/T-Q motif, we identified enrichment of an S/T-P-X-K motif in the set of ATR-dependent events, suggesting that ATR promotes signaling via proline-directed kinase(s) during meiosis. Indeed, we found that ATR signaling is important for the proper localization of CDK2 in spermatocytes. Overall, our analysis establishes a map of ATR signaling in mouse testes and highlights potential meiotic-specific actions of ATR during prophase I progression.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteoma , Testículo/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA , Reparo do DNA , Masculino , Meiose , Camundongos Endogâmicos C57BL , Morfolinas/administração & dosagem , Fosforilação , Pirimidinas/administração & dosagem , RNA Mensageiro/metabolismo , Transdução de Sinais , Espermatócitos/metabolismo
5.
Sci Rep ; 10(1): 18056, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093574

RESUMO

The maintenance of genomic stability relies on DNA damage sensor kinases that detect DNA lesions and phosphorylate an extensive network of substrates. The Mec1/ATR kinase is one of the primary sensor kinases responsible for orchestrating DNA damage responses. Despite the importance of Mec1/ATR, the current network of its identified substrates remains incomplete due, in part, to limitations in mass spectrometry-based quantitative phosphoproteomics. Phosphoproteomics suffers from lack of redundancy and statistical power for generating high confidence datasets, since information about phosphopeptide identity, site-localization, and quantitation must often be gleaned from a single peptide-spectrum match (PSM). Here we carefully analyzed the isotope label swapping strategy for phosphoproteomics, using data consistency among reciprocal labeling experiments as a central filtering rule for maximizing phosphopeptide identification and quantitation. We demonstrate that the approach allows drastic reduction of false positive quantitations and identifications even from phosphopeptides with a low number of spectral matches. Application of this approach identifies new Mec1/ATR-dependent signaling events, expanding our understanding of the DNA damage signaling network. Overall, the proposed quantitative phosphoproteomic approach should be generally applicable for investigating kinase signaling networks with high confidence and depth.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Dano ao DNA/genética , Dano ao DNA/fisiologia , Proteômica/métodos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Instabilidade Genômica/genética , Espectrometria de Massas , Fosfopeptídeos , Fosforilação
6.
Microbiome ; 7(1): 23, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760325

RESUMO

BACKGROUND: Studies of the cystic fibrosis (CF) lung microbiome have consistently shown that lung function decline is associated with decreased microbial diversity due to the dominance of opportunistic pathogens. However, how this phenomenon is reflected in the metabolites and chemical environment of lung secretions remains poorly understood. METHODS: Here we investigated the microbial and molecular composition of CF sputum samples using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry to determine their interrelationships and associations with clinical measures of disease severity. RESULTS: The CF metabolome was found to exist in two states: one from patients with more severe disease that had higher molecular diversity and more Pseudomonas aeruginosa and the other from patients with better lung function having lower metabolite diversity and fewer pathogenic bacteria. The two molecular states were differentiated by the abundance and diversity of peptides and amino acids. Patients with severe disease and more pathogenic bacteria had higher levels of peptides. Analysis of the carboxyl terminal residues of these peptides indicated that neutrophil elastase and cathepsin G were responsible for their generation, and accordingly, these patients had higher levels of proteolytic activity from these enzymes in their sputum. The CF pathogen Pseudomonas aeruginosa was correlated with the abundance of amino acids and is known to primarily feed on them in the lung. CONCLUSIONS: In cases of severe CF lung disease, proteolysis by host enzymes creates an amino acid-rich environment that P. aeruginosa comes to dominate, which may contribute to the pathogen's persistence by providing its preferred carbon source.


Assuntos
Fibrose Cística/patologia , Pulmão/microbiologia , Pulmão/patologia , Microbiota/fisiologia , Neutrófilos/enzimologia , Pseudomonas aeruginosa/isolamento & purificação , Aminoácidos/metabolismo , Catepsina G/metabolismo , Fibrose Cística/microbiologia , Disbiose/microbiologia , Humanos , Elastase de Leucócito/metabolismo , Microbiota/genética , Proteólise , Proteoma/análise , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , RNA Ribossômico 16S/genética , Escarro/microbiologia , Espectrometria de Massas em Tandem
7.
mSystems ; 4(5)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551401

RESUMO

To visualize the personalized distributions of pathogens and chemical environments, including microbial metabolites, pharmaceuticals, and their metabolic products, within and between human lungs afflicted with cystic fibrosis (CF), we generated three-dimensional (3D) microbiome and metabolome maps of six explanted lungs from three cystic fibrosis patients. These 3D spatial maps revealed that the chemical environments differ between patients and within the lungs of each patient. Although the microbial ecosystems of the patients were defined by the dominant pathogen, their chemical diversity was not. Additionally, the chemical diversity between locales in the lungs of the same individual sometimes exceeded interindividual variation. Thus, the chemistry and microbiome of the explanted lungs appear to be not only personalized but also regiospecific. Previously undescribed analogs of microbial quinolones and antibiotic metabolites were also detected. Furthermore, mapping the chemical and microbial distributions allowed visualization of microbial community interactions, such as increased production of quorum sensing quinolones in locations where Pseudomonas was in contact with Staphylococcus and Granulicatella, consistent with in vitro observations of bacteria isolated from these patients. Visualization of microbe-metabolite associations within a host organ in early-stage CF disease in animal models will help elucidate the complex interplay between the presence of a given microbial structure, antibiotics, metabolism of antibiotics, microbial virulence factors, and host responses.IMPORTANCE Microbial infections are now recognized to be polymicrobial and personalized in nature. Comprehensive analysis and understanding of the factors underlying the polymicrobial and personalized nature of infections remain limited, especially in the context of the host. By visualizing microbiomes and metabolomes of diseased human lungs, we reveal how different the chemical environments are between hosts that are dominated by the same pathogen and how community interactions shape the chemical environment or vice versa. We highlight that three-dimensional organ mapping methods represent hypothesis-building tools that allow us to design mechanistic studies aimed at addressing microbial responses to other microbes, the host, and pharmaceutical drugs.

8.
Sci Adv ; 4(9): eaau1908, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30263961

RESUMO

Environmental microbial communities are stratified by chemical gradients that shape the structure and function of these systems. Similar chemical gradients exist in the human body, but how they influence these microbial systems is more poorly understood. Understanding these effects can be particularly important for dysbiotic shifts in microbiome structure that are often associated with disease. We show that pH and oxygen strongly partition the microbial community from a diseased human lung into two mutually exclusive communities of pathogens and anaerobes. Antimicrobial treatment disrupted this chemical partitioning, causing complex death, survival, and resistance outcomes that were highly dependent on the individual microorganism and on community stratification. These effects were mathematically modeled, enabling a predictive understanding of this complex polymicrobial system. Harnessing the power of these chemical gradients could be a drug-free method of shaping microbial communities in the human body from undesirable dysbiotic states.


Assuntos
Infecções Bacterianas/microbiologia , Quimiotaxia/fisiologia , Fibrose Cística/microbiologia , Pulmão/microbiologia , Microbiota/fisiologia , Adulto , Antibacterianos/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Quimiotaxia/efeitos dos fármacos , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão/metabolismo , Pulmão/patologia , Redes e Vias Metabólicas , Modelos Teóricos , Escarro/metabolismo , Escarro/microbiologia , Transcriptoma , Fatores de Virulência/metabolismo
9.
J Vis Exp ; (123)2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28518116

RESUMO

Many chronic airway diseases result in mucus plugging of the airways. Lungs of an individual with cystic fibrosis are an exemplary case where their mucus-plugged bronchioles create a favorable habitat for microbial colonization. Various pathogens thrive in this environment interacting with each other and driving many of the symptoms associated with CF disease. Like any microbial community, the chemical conditions of their habitat have a significant impact on the community structure and dynamics. For example, different microorganisms thrive in differing levels of oxygen or other solute concentrations. This is also true in the CF lung, where oxygen concentrations are believed to drive community physiology and structure. The methods described here are designed to mimic the lung environment and grow pathogens in a manner more similar to that from which they cause disease. Manipulation of the chemical surroundings of these microbes is then used to study how the chemistry of lung infections governs its microbial ecology. The method, called the WinCF system, is based on artificial sputum medium and narrow capillary tubes meant to provide an oxygen gradient similar to that which exists in mucus-plugged bronchioles. Manipulating chemical conditions, such as the media pH of the sputum or antibiotics pressure, allows for visualization of the microbiological differences in those samples using colored indicators, watching for gas or biofilm production, or extracting and sequencing the nucleic acid contents of each sample.


Assuntos
Bronquíolos/microbiologia , Modelos Biológicos , Infecções Respiratórias/microbiologia , Fibrose Cística/microbiologia , Humanos , Pulmão/microbiologia , Muco/microbiologia , Escarro/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA