RESUMO
This Letter reports one of the most precise measurements to date of the antineutrino spectrum from a purely ^{235}U-fueled reactor, made with the final dataset from the PROSPECT-I detector at the High Flux Isotope Reactor. By extracting information from previously unused detector segments, this analysis effectively doubles the statistics of the previous PROSPECT measurement. The reconstructed energy spectrum is unfolded into antineutrino energy and compared with both the Huber-Mueller model and a spectrum from a commercial reactor burning multiple fuel isotopes. A local excess over the model is observed in the 5-7 MeV energy region. Comparison of the PROSPECT results with those from commercial reactors provides new constraints on the origin of this excess, disfavoring at 2.0 and 3.7 standard deviations the hypotheses that antineutrinos from ^{235}U are solely responsible and noncontributors to the excess observed at commercial reactors, respectively.
RESUMO
A joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant ^{235}U and ^{239}Pu isotopes and improves the uncertainty of the ^{235}U spectral shape to about 3%. The ^{235}U and ^{239}Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the ^{235}U and ^{239}Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.
RESUMO
The PROSPECT and STEREO collaborations present a combined measurement of the pure ^{235}U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at research reactors are found to be compatible with χ^{2}/ndf=24.1/21, allowing a joint unfolding of the prompt energy measurements into antineutrino energy. This ν[over ¯]_{e} energy spectrum is provided to the community, and an excess of events relative to the Huber model is found in the 5-6 MeV region. When a Gaussian bump is fitted to the excess, the data-model χ^{2} value is improved, corresponding to a 2.4σ significance.
RESUMO
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
RESUMO
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of ^{235}U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton ^{6}Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 m water equivalent overburden. Data collected during 33 live days of reactor operation at a nominal power of 85 MW yield a detection of 25 461±283 (stat) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5σ statistical significance within 2 h of on-surface reactor-on data taking. A reactor model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the reactor antineutrino anomaly at 2.2σ confidence level.
RESUMO
An understanding of anthropogenic sources of radioactive noble gases in the atmosphere is needed to enhance the discrimination ability of the International Monitoring System's sensors. These sources include commercial and research nuclear reactors and medical isotope production facilities. While abiding by local environmental ordinances these facilities all emit noble gas radioisotopes through normal operation. This research presents measurements and analysis of noble gas isotopes (41Ar, 135Xe, 135mXe, 137Xe, 138Xe, 87Kr, 88Kr, and 89Kr) made directly at the stack of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. The Xe and Kr noble gases are concurrently observed with 41Ar, a neutron activation product, when the reactor is operational. The magnitude of the Xe and Kr noble gases released is not constant over the HFIR cycle, but they temporally match the 41Ar trend. An isotope activity ratio analysis of these shorter lived isotopes combined with the observation of the cycle's temporal trend helps understand the noble gas production mechanism at the HFIR. Isotopes with short half-lives are not useful for long-range environmental monitoring. However, these measurements could potentially be combined with atmospheric modeling to predict the background source term of the longer-lived Xe ratios at a monitoring station.
Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , Radioisótopos de Xenônio/análise , Gases Nobres , RadioisótoposRESUMO
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of ν ¯ e is important when making theoretical predictions. One source of ν ¯ e that is often neglected arises from the irradiation of the nonfuel materials in reactors. The ν ¯ e rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible ν ¯ e sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the ν ¯ e source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel ν ¯ e contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8-2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel ν ¯ e contribution.