Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microb Pathog ; 189: 106607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437995

RESUMO

OBJECTIVES: The selected kyotorphin derivatives were tested to improve their antimicrobial and antibiofilm activity. The antimicrobial screening of the KTP derivatives were ascertained in the representative strains of bacteria, including Streptococcus pneumoniae, Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa. METHODS: Kyotorphin derivatives, KTP-NH2, KTP-NH2-DL, IbKTP, IbKTP-NH2, MetKTP-DL, MetKTP-LD, were designed and synthesized to improve lipophilicity and resistance to enzymatic degradation. Peptides were synthesized by standard solution or solid-phase peptide synthesis and purified using RP-HPLC, which resulted in >95 % purity, and were fully characterized by mass spectrometry and 1H NMR. The minimum inhibitory concentrations (MIC) determined for bacterial strains were between 20 and 419 µM. The direct effect of IbKTP-NH2 on bacterial cells was imaged using scanning electron microscopy. The absence of toxicity, high survival after infection and an increase in the hemocytes count was evaluated by injections of derivatives in Galleria mellonella larvae. Proteomics analyses of G. mellonella hemolymph were performed to investigate the underlying mechanism of antibacterial activity of IbKTP-NH2 at MIC. RESULTS: IbKTP-NH2 induces morphological changes in bacterial cell, many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and virulence were up-regulated after the treatment of G. mellonella with IbKTP-NH2. CONCLUSION: We suggest that this derivative, in addition to its physical activity on the bacterial membranes, can elicit a cellular and humoral immune response, therefore, it could be considered for biomedical applications.


Assuntos
Anti-Infecciosos , Endorfinas , Mariposas , Animais , Proteômica , Mariposas/microbiologia , Antibacterianos/farmacologia , Larva , Peptídeos
2.
J Environ Manage ; 338: 117804, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996570

RESUMO

The bacterial synthesis of copper nanoparticles emerges as an eco-friendly alternative to conventional techniques since it comprises a single-step and bottom-up approach, which leads to stable metal nanoparticles. In this paper, we studied the biosynthesis of Cu-based nanoparticles by Rhodococcus erythropolis ATCC4277 using a pre-processed mining tailing as a precursor. The influence of pulp density and stirring rate on particle size was evaluated using a factor-at-time experimental design. The experiments were carried out in a stirred tank bioreactor for 24 h at 25 °C, wherein 5% (v/v) of bacterial inoculum was employed. The O2 flow rate was maintained at 1.0 L min-1 and the pH at 7.0. Copper nanoparticles (CuNPs), with an average hydrodynamic diameter of 21 ± 1 nm, were synthesized using 25 g.L-1 of mining tailing and a stirring rate of 250 rpm. Aiming to visualize some possible biomedical applications of the as-synthesized CuNPs, their antibacterial activity was evaluated against Escherichia coli and their cytotoxicity was evaluated against Murine Embryonic Fibroblast (MEF) cells. The 7-day extract of CuNPs at 0.1 mg mL-1 resulted in 75% of MEF cell viability. In the direct method, the suspension of CuNPs at 0.1 mg mL-1 resulted in 70% of MEF cell viability. Moreover, the CuNPs at 0.1 mg mL-1 inhibited 60% of E. coli growth. Furthermore, the NPs were evaluated regarding their photocatalytic activity by monitoring the oxidation of methylene blue (MB) dye. The CuNPs synthesized showed rapid oxidation of MB dye, with the degradation of approximately 65% of dye content in 4 h. These results show that the biosynthesis of CuNPs by R. erythropolis using pre-processed mine tailing can be a suitable method to obtain CuNPs from environmental and economical perspectives, resulting in NPs useful for biomedical and photocatalytic applications.


Assuntos
Proteínas de Escherichia coli , Nanopartículas Metálicas , Camundongos , Animais , Cobre/química , Escherichia coli , Nanopartículas Metálicas/química , Bactérias , Oxirredução , Antibacterianos/química , Proteínas de Ciclo Celular
3.
Fish Shellfish Immunol ; 107(Pt A): 230-237, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33039531

RESUMO

In order to understand events and mechanisms present in the pathophysiology of tilapia's chronic inflammation and based on the immunomodulatory activity attributed to cyclophosphamide which is widely used to suppress immune responses in human medicine, the present study investigated the effects of cyclophosphamide (CYP) treatment on the modulation of foreign body inflammatory reaction in Nile tilapia (Oreochromis niloticus) with round glass coverslip implanted in the subcutaneous tissue (9 mm of diameter). Forty tilapia (151 ± 10,2 g) were randomly distributed in 5 aquariums (n = 8) with a capacity of 250 L of water each, to compose two treatments (sampled 3 and 6 days post-implantation): implanted/untreated (control) and implanted/treated with 200 mg of CYP kg-1 of b.w., through i.p. route. A fifth group (n = 8) was sampled without any stimulus (naive) to obtain reference values. CYP-treated tilapia showed decrease in macrophage accumulation, giant cell formation and Langhans cells on the glass coverslip when compared to control fish. The treatment with CYP resulted in decrease of leukocyte and thrombocyte counts. Decrease in alpha-2-macroglobulin, ceruloplasmin, albumin and transferrin levels, as well as increase in haptoglobin, complement C3 and apolipoprotein A1 were observed in tilapias during foreign body inflammation. Blood levels of complement C3, alpha-2-macroglobulin, ceruloplasmin and transferrin were modulated by treatment with CYP. Therefore, the treatment with 200 mg of CYP kg-1 of b.w. in tilapia resulted in an anti-inflammatory effect by suppressing the dynamics between leukocytes in the bloodstream and macrophage accumulation with giant cell formation in the inflamed focus, as well as by modulating APPs during foreign body reaction.


Assuntos
Ciclídeos/imunologia , Ciclofosfamida/farmacologia , Doenças dos Peixes/imunologia , Reação a Corpo Estranho/veterinária , Imunidade Inata , Imunossupressores/farmacologia , Animais , Reação a Corpo Estranho/imunologia
4.
Amino Acids ; 48(1): 307-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26347373

RESUMO

Recently, a designed class of efficient analgesic drugs derived from an endogenous neuropeptide, kyotorphin (KTP, Tyr-Arg) combining C-terminal amidation (KTP-NH2) and N-terminal conjugation to ibuprofen (Ib), IbKTP-NH2, was developed. The Ib moiety is an enhancer of KTP-NH2 analgesic action. In the present study, we have tested the hypothesis that KTP-NH2 is an enhancer of the Ib anti-inflammatory action. Moreover, the impact of the IbKTP-NH2 conjugation on microcirculation was also evaluated by a unified approach based on intravital microscopy in the murine cremasteric muscle. Our data show that KTP-NH2 and conjugates do not cause damage on microcirculatory environment and efficiently decrease the number of leukocyte rolling induced by lipopolysaccharide (LPS). Isothermal titration calorimetry showed that the drugs bind to LPS directly thus contributing to LPS aggregation and subsequent elimination. In a parallel study, molecular dynamics simulations and NMR data showed that the IbKTP-NH2 tandem adopts a preferential "stretched" conformation in lipid bilayers and micelles, with the simulations indicating that the Ib moiety is anchored in the hydrophobic core, which explains the improved partition of IbKTP-NH2 to membranes and the permeability of lipid bilayers to this conjugate relative to KTP-NH2. The ability to bind glycolipids concomitant to the anchoring in the lipid membranes through the Ib residue explains the analgesic potency of IbKTP-NH2 given the enriched glycocalyx of the blood-brain barrier cells. Accumulation of IbKTP-NH2 in the membrane favors both direct permeation and local interaction with putative receptors as the location of the KTP-NH2 residue of IbKTP-NH2 and free KTP-NH2 in lipid membranes is the same.


Assuntos
Analgésicos/química , Anti-Inflamatórios/química , Endorfinas/metabolismo , Bicamadas Lipídicas/metabolismo , Analgésicos/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Endorfinas/química , Feminino , Bicamadas Lipídicas/química , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular
5.
Biochim Biophys Acta Biomembr ; 1865(8): 184216, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37598878

RESUMO

Boosted by the indiscriminate use of antibiotics, multidrug-resistance (MDR) demands new strategies to combat bacterial infections, such as photothermal therapy (PTT) based on plasmonic nanostructures. PTT efficiency relies on photoinduced damage caused to the bacterial machinery, for which nanostructure incorporation into the cell envelope is key. Herein, we shall unveil the binding and photochemical mechanisms of gold shell-isolated nanorods (AuSHINRs) on bioinspired bacterial membranes assembled as Langmuir and Langmuir-Schaefer (LS) monolayers of DOPE, Lysyl-PG, DOPG and CL. AuSHINRs incorporation expanded the isotherms, with stronger effect on the anionic DOPG and CL. Indeed, FTIR of LS films revealed more modifications for DOPG and CL owing to stronger attractive electrostatic interactions between anionic phosphates and the positively charged AuSHINRs, while electrostatic repulsions with the cationic ethanolamine (DOPE) and lysyl (Lysyl-PG) polar groups might have weakened their interactions with AuSHINRs. No statistical difference was observed in the surface area of irradiated DOPE and Lysyl-PG monolayers on AuSHINRs, which is evidence of the restricted nanostructures insertion. In contrast, irradiated DOPG monolayer on AuSHINRs decreased 4.0 % in surface area, while irradiated CL monolayer increased 3.7 %. Such results agree with oxidative reactions prompted by ROS generated by AuSHINRs photoactivation. The deepest AuSHINRs insertion into DOPG may have favored chain cleavage while hydroperoxidation is the mostly like outcome in CL, where AuSHINRs are surrounding the polar groups. Furthermore, preliminary experiments on Escherichia coli culture demonstrated that the electrostatic interactions with AuSHINRs do not inhibit bacterial growth, but the photoinduced effects are highly toxic, resulting in microbial inactivation.


Assuntos
Nanoestruturas , Nanotubos , Ouro , Membranas , Membrana Celular , Escherichia coli
6.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145362

RESUMO

The therapeutic potential of venom-derived peptides, such as bioactive peptides (BAPs), is determined by specificity, stability, and pharmacokinetics properties. BAPs, including anti-infective or antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs), share several physicochemical characteristics and are potential alternatives to antibiotic-based therapies and drug delivery systems, respectively. This study used in silico methods to predict AMPs and CPPs derived from natterins from the venomous fish Thalassophryne nattereri. Fifty-seven BAPs (19 AMPs, 8 CPPs, and 30 AMPs/CPPs) were identified using the web servers CAMP, AMPA, AmpGram, C2Pred, and CellPPD. The physicochemical properties were analyzed using ProtParam, PepCalc, and DispHred tools. The membrane-binding potential and cellular location of each peptide were analyzed using the Boman index by APD3, and TMHMM web servers. All CPPs and two AMPs showed high membrane-binding potential. Fifty-four peptides were located in the plasma membrane. Peptide immunogenicity, toxicity, allergenicity, and ADMET parameters were evaluated using several web servers. Sixteen antiviral peptides and 37 anticancer peptides were predicted using the web servers Meta-iAVP and ACPred. Secondary structures and helical wheel projections were predicted using the PEP-FOLD3 and Heliquest web servers. Fifteen peptides are potential lead compounds and were selected to be further synthesized and tested experimentally in vitro to validate the in silico screening. The use of computer-aided design for predicting peptide structure and activity is fast and cost-effective and facilitates the design of potent therapeutic peptides. The results demonstrate that toxins form a natural biotechnological platform in drug discovery, and the presence of CPP and AMP sequences in toxin families opens new possibilities in toxin biochemistry research.

7.
Int J Nanomedicine ; 17: 5315-5325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411766

RESUMO

Background: Photodynamic therapy (PDT) is a non-invasive treatment modality that destroys abnormally growing cells or microorganisms. Porphyrins are used as photosensitizers in PDT; however, their clinical application has been limited by their poor water solubility, resulting in aggregation and low quantum yields of reactive oxygen species (ROS). Methods: To overcome these limitations and improve PDT efficacy, we herein report the conjugation of ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs) to 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP). The optimal conditions for QDs porphyrin conjugation formation were systematically evaluated. Discussion: This study further assessed the PDT efficacy and antibacterial potency of the synthesized ZCIS/ZnS-mTHPP conjugates. The PDT efficacy of the QDs, mTHPP, and conjugate was evaluated against the murine metastatic melanoma (B16 F10 Nex2) cell line. This was performed with and without LED irradiation. Results: The conjugate exhibited the highest reduction in cell viability following LED irradiation (72%) compared to the bare QDs (19%) and mTHPP (1%). Antimicrobial studies conducted on E. coli showed that the conjugation exhibits a higher antibacterial effect than the bare QDs, even without light. Conclusion: The results suggest that conjugate is a promising class of materials for anti-cancer and antimicrobial PDT.


Assuntos
Fotoquimioterapia , Porfirinas , Pontos Quânticos , Camundongos , Animais , Escherichia coli , Porfirinas/farmacologia , Antibacterianos/farmacologia , Zinco
8.
Pharmaceutics ; 14(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35890220

RESUMO

The functionalization of nanoparticles with therapeutic peptides has been pointed out as a promising strategy to improve the applications of these molecules in the field of health sciences. Peptides are highly bioactive but face several limitations such as low bioavailability due to the difficulty of overcoming the physiological barriers in the body and their degradation by enzymes. In this work, gold nanoparticles (AuNPs) were co-functionalized with two therapeutic peptides simultaneously. The peptides from the complementary determining region of monoclonal antibodies, composed of the amino acid sequences YISCYNGATSYNQKFK (C7H2) and RASQSVSSYLA (HuAL1) were chosen for having exhibited antitumor and antimicrobial activity before. The peptides-conjugated AuNPs were characterized regarding size, morphology, and metal concentration by using TEM, dynamic light scattering, and ICP-OES techniques. Then, peptides-conjugated AuNPs were evaluated regarding the antimicrobial activity against E. coli, P. aeruginosa, and C. albicans. The antitumoral activity was evaluated in vitro by cell viability assays with metastatic melanoma cell line (B16F10-Nex2) and the cytotoxicity was evaluated against human foreskin fibroblast (Hs68) cell line. Finally, in vivo assays were performed by using a syngeneic animal model of metastatic melanoma. Our findings have highlighted the potential application of the dual-peptide AuNPs in order to enhance the antitumor and antimicrobial activity of peptides.

9.
Front Immunol ; 13: 1019201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248846

RESUMO

Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.


Assuntos
Leucócitos , Proteoma , Peixe-Zebra , Proteínas de Fase Aguda , Animais , Carragenina/metabolismo , Glicosaminoglicanos , Humanos , Inflamação/induzido quimicamente , Neutrófilos/metabolismo , Plasma/metabolismo , Proteômica , Peixe-Zebra/metabolismo
10.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34942250

RESUMO

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Feminino , Humanos , SARS-CoV-2 , Peixe-Zebra
11.
J Pept Sci ; 17(3): 192-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21308875

RESUMO

In order to investigate the relationship between the primary structure of Orpotrin, a vasoactive peptide previously isolated from the freshwater stingray Potamotrygon gr. orbignyi, and its microcirculatory effects, three Orpotrin analogs were synthesized. The analogs have a truncated N-terminal with a His residue deletion and two substituted amino acid residues, where one Nle is substituted for one internal Lys residue and the third analog has a substitution of a Pro for an Ala (Orp-desH(1) , Orp-Nle and Orp-Pro/Ala, respectively). Only Orp-desH(1) could induce a lower vasoconstriction effect compared with the natural Orpotrin, indicating that besides the N-terminal, the positive charge of Lys and the Pro residues located at the center of the amino acid chain is crucial for this vasoconstriction effect. Importantly, the suggestions made with bioactive peptides were based on the molecular modeling and dynamics of peptides, the presence of key amino acids and shared activity in microcirculation, characterized by intravital microscopy. Moreover, this study has demonstrated that even subtle changes in the primary structure of Orpotrin alter the biological effects of this native peptide significantly, which could be of interest for biotechnological applications.


Assuntos
Venenos de Peixe/química , Venenos de Peixe/farmacologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Leucócitos/efeitos dos fármacos , Camundongos , Microcirculação/efeitos dos fármacos , Microscopia , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
12.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200105, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33868394

RESUMO

BACKGROUND: Amphibians inhabit the terrestrial environment, a conquest achieved after several evolutionary steps, which were still insufficient to make them completely independent of the aquatic environment. These processes gave rise to many morphological and physiological changes, making their skin (and cutaneous secretion) rich in bioactive molecules. Among the tree frogs, the secretion is composed mainly of peptides; but alkaloids, proteins and steroids can also be found depending on the species. The most known class of biologically active molecules is the antimicrobial peptides (AMPs) that act against bacteria, fungi and protozoans. Although these molecules are well-studied among the hylids, AMPs ontogeny remains unknown. Therefore, we performed peptidomic and proteomic analyses of Pithecopus nordestinus (formerly Phyllomedusa nordestina) in order to evaluate the peptide content in post-metamorphosed juveniles and adult individuals. METHODS: Cutaneous secretion of both life stages of individuals was obtained and analyzed by LC-MS/MS after reduction and alkylation of disulfide bonds or reduction, alkylation and hydrolysis by trypsin. RESULTS: Differences in the TIC profile of juveniles and adults in both treatments were observed. Moreover, the proteomic data revealed known proteins and peptides, with slight differences in the composition, according to the life stage and the treatment. AMPs were identified, and bradykinin-potentiating peptides were observed in trypsin-treated samples, which suggests a protein source of such peptide (cryptide). CONCLUSION: In general, skin secretion contents were similar between juveniles and adults, varying in quantity, indicating that the different stages of life are reflected in the number of molecules and not on their diversity.

13.
Int Immunopharmacol ; 91: 107287, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33378723

RESUMO

Natterin is an aerolysin-like pore-forming toxin responsible for the toxic effects of the venom of the medically significant fish Thalassophryne nattereri. Using a combination of pharmacologic and genetic loss-of-function approaches we conduct a systematic investigation of the regulatory mechanisms that control Natterin-induced neutrophilic inflammation in the peritonitis model. Our data confirmed the capacity of Natterin to induce a strong and sustained neutrophilic inflammation leading to systemic inflammatory lung infiltration and revealed overlapping regulatory paths in its control. We found that Natterin induced the extracellular release of mature IL-1ß and the sustained production of IL-33 by bronchial epithelial cells. We confirmed the dependence of both ST2/IL-33 and IL-17A/IL-17RA signaling on the local and systemic neutrophils migration, as well as the crucial role of IL-1α, caspase-1 and caspase-11 for neutrophilic inflammation. The inflammation triggered by Natterin was a gasdermin-D-dependent inflammasome process, despite the cells did not die by pyroptosis. Finally, neutrophilic inflammation was mediated by non-canonical NLRP6 and NLRC4 adaptors through ASC interaction, independent of NLRP3. Our data highlight that the inflammatory process dependent on non-canonical inflammasome activation can be a target for pharmacological intervention in accidents by T. nattereri, which does not have adequate specific therapy.


Assuntos
Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Venenos de Peixe/farmacologia , Inflamassomos/metabolismo , Inflamação/imunologia , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Peritonite/induzido quimicamente , Receptores de Superfície Celular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/genética , Caspases Iniciadoras/genética , Feminino , Inflamassomos/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/enzimologia , Pulmão/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/imunologia , Peritonite/enzimologia , Peritonite/genética , Peritonite/imunologia , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Transdução de Sinais
14.
Toxins (Basel) ; 14(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050979

RESUMO

TmC4-47.2 is a toxin with myotoxic activity found in the venom of Thalassophryne maculosa, a venomous fish commonly found in Latin America whose envenomation produces an injury characterized by delayed neutrophil migration, production of major pro-inflammatory cytokines, and necrosis at the wound site, as well as a specific systemic immune response. However, there are few studies on the protein structure and functions associated with it. Here, the toxin was identified from the crude venom by chromatography and protein purification systems. TmC4-47.2 shows high homology with the Nattectin from Thalassophryne nattereri venom, with 6 cysteines and QPD domain for binding to galactose. We confirm its hemagglutinating and microbicide abilities independent of carbohydrate binding, supporting its classification as a nattectin-like lectin. After performing the characterization of TmC4-47.2, we verified its ability to induce an increase in the rolling and adherence of leukocytes in cremaster post-capillary venules dependent on the α5ß1 integrin. Finally, we could observe the inflammatory activity of TmC4-47.2 through the production of IL-6 and eotaxin in the peritoneal cavity with sustained recruitment of eosinophils and neutrophils up to 24 h. Together, our study characterized a nattectin-like protein from T. maculosa, pointing to its role as a molecule involved in the carbohydrate-independent agglutination response and modulation of eosinophilic and neutrophilic inflammation.


Assuntos
Batracoidiformes , Venenos de Peixe/química , Lectinas Tipo C/química , Toxinas Marinhas/química , Sequência de Aminoácidos , Animais , Venenos de Peixe/farmacologia , Toxinas Marinhas/farmacologia
15.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070326

RESUMO

Conjugation of photosensitizers (PS) with nanoparticles has been largely used as a strategy to stabilize PS in the biological medium resulting in photosensitizing nanoparticles of enhanced photoactivity. Herein, (Meso-5, 10, 15, 20-tetrakis (3-hydroxyphenyl) phorphyryn (mTHPP) was conjugated with diamond nanoparticles (ND) by covalent bond. Nanoconjugate ND-mTHPP showed suitable stability in aqueous suspension with 58 nm of hydrodynamic diameter and Zeta potential of -23 mV. The antibacterial activity of ND-mTHPP was evaluated against Escherichia coli for different incubation times (0-24 h). The optimal activity was observed after 2 h of incubation and irradiation (660 nm; 51 J/cm2) performed right after the addition of ND-mTHPP (100 µg/mL) to the bacterial suspension. The inhibitory activity was 56% whereas ampicillin at the same conditions provided only 14% of bacterial growth inhibition. SEM images showed agglomerate of ND-mTHPP adsorbed on the bacterial cell wall, suggesting that the antimicrobial activity of ND-mTHPP was afforded by inducing membrane damage. Cytotoxicity against murine embryonic fibroblast cells (MEF) was also evaluated and ND-mTHPP was shown to be noncytotoxic since viability of cells cultured for 24 h in the presence of the nanoconjugate (100 µg/mL) was 78%. Considering the enhanced antibacterial activity and the absence of cytotoxic effect, it is possible to consider the ND-mTHPP nanoconjugate as promising platform for application in antimicrobial photodynamic therapy (aPDT).

16.
J Med Chem ; 63(17): 9391-9402, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787086

RESUMO

Available treatments for invasive fungal infections have limitations, including toxicity and the emergence of resistant strains. Therefore, there is an urgent need for alternative solutions. Because of their unique mode of action and high selectivity, plant defensins (PDs) are worthy therapeutic candidates. Chemical synthesis remains a preferred method for the production of many peptide-based therapeutics. Given the relatively long sequence of PDs, as well as their complicated posttranslational modifications, the synthetic route can be considered challenging. Here, we describe a total synthesis of PvD1, the defensin from the common bean Phaseolus vulgaris. Analytical, structural, and functional characterization revealed that both natural and synthetic peptides fold into a canonical CSαß motif stabilized by conserved disulfide bonds. Moreover, synthetic PvD1 retained the biological activity against four different Candida species and showed no toxicity in vivo. Adding the high resistance of synthetic PvD1 to proteolytic degradation, we claim that conditions are now met to consider PDs druggable biologicals.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Defensinas/química , Defensinas/farmacologia , Phaseolus/química , Sequência de Aminoácidos , Antifúngicos/síntese química , Técnicas de Química Sintética , Defensinas/síntese química , Humanos , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Proteólise
17.
Fungal Biol ; 124(5): 316-326, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389294

RESUMO

Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous analgesic neuropeptide first isolated from bovine brain in 1979. Previous studies have shown that kyotorphins possess anti-inflammatory and antimicrobial activity. Six kyotorphins-KTP-NH2, KTP-NH2-DL, ibuprofen-conjugated KTP (IbKTP), IbKTP-NH2, N-methyl-D-Tyr-L-Arg, and N-methyl-L-Tyr-D-Arg-were designed and synthesized to improve lipophilicity and resistance to enzymatic degradation. This study assessed the antimicrobial and antibiofilm activity of these peptides. The antifungal activity of kyotorphins was determined in representative strains of Candida species, including Candida albicans ATCC 10231, Candida krusei ATCC 6258, and six clinical isolates-Candida dubliniensis 19-S, Candida glabrata 217-S, Candida lusitaniae 14-S, Candida novergensis 51-S, Candida parapsilosis 63, and Candida tropicalis 140-S-obtained from the oral cavity of HIV-positive patients. The peptides were synthesized by standard solution or solid-phase synthesis, purified by RP-HPLC (purity >95 %), and characterized by nuclear magnetic resonance. The results of the broth microdilution assay and scanning electron microscopy showed that IbKTP-NH2 presented significant antifungal activity against Candida strains and antibiofilm activity against the clinical isolates. The absence of toxic activity and survival after infection was assessed after injecting the peptide in larvae of Galleria mellonella as experimental infection model. Furthermore, IbKTP-NH2 had strong antimicrobial activity against multidrug-resistant bacteria and fungi and was not toxic to G. mellonella larvae up to a concentration of 500 mM. These results suggest that IbKTP-NH2, in addition to its known effect on cell membranes, can elicit a cellular immune response and, therefore, is promising for biomedical application.


Assuntos
Antifúngicos , Biofilmes , Candida , Endorfinas , Animais , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Endorfinas/química , Endorfinas/farmacologia , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas/microbiologia
18.
3 Biotech ; 10(4): 162, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32206496

RESUMO

The emergence of bacterial resistance due to the indiscriminate use of antibiotics warrants the need for developing new bioactive agents. In this context, antimicrobial peptides are highly useful for managing resistant microbial strains. In this study, we report the isolation and characterization of peptides obtained from the venom of the toadfish Thalassophryne nattereri. These peptides were active against Gram-positive and Gram-negative bacteria and fungi. The primary amino acid sequences showed similarity to Cocaine and Amphetamine Regulated Transcript peptides, and two peptide analogs-Tn CRT2 and Tn CRT3-were designed using the AMPA algorithm based on these sequences. The analogs were subjected to physicochemical analysis and antimicrobial screening and were biologically active at concentrations ranging from 2.1 to 13 µM. Zeta potential analysis showed that the peptide analogs increased the positive charge on the cell surface of Gram-positive and Gram-negative bacteria. The toxicity of Tn CRT2 and Tn CRT3 were analyzed in vitro using a hemolytic assay and tetrazolium salt reduction in fibroblasts and was found to be significant only at high concentrations (up to 40 µM). These results suggest that this methodological approach is appropriate to design novel antimicrobial peptides to fight bacterial infections and represents a new and promising discovery in fish venom.

19.
Sci Rep ; 9(1): 4776, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886242

RESUMO

Acute-phase protein (APPs) serum levels have been studied in many human diseases, and their components contribute to host defense during the evolution of infectious diseases by acting as part of the innate immune system. Based on the importance of establishing new experimental models, the present investigation evaluated the modulation of APPs following inflammatory stimulus by the inoculation of Aeromonas hydrophila in tilapias. Fish were sampled 6 and 24 hours post-infection. Tilapias presented increase of positive APPs such as ceruloplasmin, haptoglobin, alpha-2-macroglobulin and complement C3, as well as decrease of negative APPs such as albumin and transferrin. The protein response of tilapias during the course of bacterial infection showed correlation with the kinetics of cellular accumulation in the inflamed focus with significant increase of granulocytes, thrombocytes, lymphocytes and macrophages. However, granulocytes were the predominant cells, associated with increment in the reactive oxygen species (ROS) production. Showing responses similar to those observed in humans, the modulation of APPs and the kinetics of cellular accumulation in the exudate demonstrate the feasibility of this alternative experimental model for advances and studies to understand changes in pathophysiological mechanisms of acute inflammatory reaction due to bacterial infection.


Assuntos
Proteínas de Fase Aguda/metabolismo , Infecções Bacterianas/microbiologia , Modelos Animais de Doenças , Proteínas de Peixes/metabolismo , Tilápia/imunologia , Proteínas de Fase Aguda/genética , Aeromonas hydrophila/patogenicidade , Animais , Infecções Bacterianas/imunologia , Proteínas de Peixes/genética , Tilápia/microbiologia
20.
Peptides ; 28(3): 515-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17098329

RESUMO

Bradykinin potentiating peptides (BPPs) from Bothrops jararaca venom were first described in the middle of 1960s and were the first natural inhibitors of the angiotensin-converting enzyme (ACE). BPPs present a classical motif and can be recognized by their typical pyroglutamyl (Pyr)/proline rich sequences presenting, invariably, a proline residue at the C-terminus. In the present study, we describe the isolation and biological characterization of a novel BPP isolated from the skin secretion of the Brazilian tree-frog Phyllomedusa hypochondrialis. This new BPP, named Phypo Xa presents the sequence Pyr-Phe-Arg-Pro-Ser-Tyr-Gln-Ile-Pro-Pro and is able to potentiate bradykinin activities in vivo and in vitro, as well as efficiently and competitively inhibit ACE. This is the first canonical BPP (i.e. Pyr-Aaa(n)-Gln-Ile-Pro-Pro) to be found not only in the frog skin but also in any other natural source other than the snake venoms.


Assuntos
Anuros/metabolismo , Bradicinina/metabolismo , Oligopeptídeos/isolamento & purificação , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anuros/genética , Pressão Sanguínea/efeitos dos fármacos , Bradicinina/farmacologia , Sinergismo Farmacológico , Feminino , Cobaias , Íleo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Ratos , Ratos Wistar , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA