Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(6): 1424-1436.e18, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29153835

RESUMO

RNA profiles are an informative phenotype of cellular and tissue states but can be costly to generate at massive scale. Here, we describe how gene expression levels can be efficiently acquired with random composite measurements-in which abundances are combined in a random weighted sum. We show (1) that the similarity between pairs of expression profiles can be approximated with very few composite measurements; (2) that by leveraging sparse, modular representations of gene expression, we can use random composite measurements to recover high-dimensional gene expression levels (with 100 times fewer measurements than genes); and (3) that it is possible to blindly recover gene expression from composite measurements, even without access to training data. Our results suggest new compressive modalities as a foundation for massive scaling in high-throughput measurements and new insights into the interpretation of high-dimensional data.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Compressão de Dados , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células K562 , Análise de Sequência de RNA/métodos
2.
Cell ; 166(6): 1500-1511.e9, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610572

RESUMO

Reversing the dysfunctional T cell state that arises in cancer and chronic viral infections is the focus of therapeutic interventions; however, current therapies are effective in only some patients and some tumor types. To gain a deeper molecular understanding of the dysfunctional T cell state, we analyzed population and single-cell RNA profiles of CD8(+) tumor-infiltrating lymphocytes (TILs) and used genetic perturbations to identify a distinct gene module for T cell dysfunction that can be uncoupled from T cell activation. This distinct dysfunction module is downstream of intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional module, as a regulator of dysfunction, and we use CRISPR-Cas9 genome editing to show that it drives a dysfunctional phenotype in CD8(+) TILs. Our results open novel avenues for targeting dysfunctional T cell states while leaving activation programs intact.


Assuntos
Linfócitos T CD8-Positivos/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Animais , Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas , Carcinogênese/genética , Carcinogênese/imunologia , Feminino , Fator de Transcrição GATA3/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanoma/imunologia , Melanoma/fisiopatologia , Metalotioneína/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Immunity ; 54(10): 2338-2353.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534439

RESUMO

In tumors, a subset of CD8+ T cells expressing the transcription factor TCF-1 drives the response to immune checkpoint blockade. We examined the mechanisms that maintain these cells in an autochthonous model of lung adenocarcinoma. Longitudinal sampling and single-cell sequencing of tumor-antigen specific TCF-1+ CD8+ T cells revealed that while intratumoral TCF-1+ CD8+ T cells acquired dysfunctional features and decreased in number as tumors progressed, TCF-1+ CD8+ T cell frequency in the tumor draining LN (dLN) remained stable. Two discrete intratumoral TCF-1+ CD8+ T cell subsets developed over time-a proliferative SlamF6+ subset and a non-cycling SlamF6- subset. Blocking dLN egress decreased the frequency of intratumoral SlamF6+ TCF-1+ CD8+ T cells. Conventional type I dendritic cell (cDC1) in dLN decreased in number with tumor progression, and Flt3L+anti-CD40 treatment recovered SlamF6+ T cell frequencies and decreased tumor burden. Thus, cDC1s in tumor dLN maintain a reservoir of TCF-1+ CD8+ T cells and their decrease contributes to failed anti-tumor immunity.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Linfonodos/imunologia , Fator 1 de Transcrição de Linfócitos T/imunologia , Animais , Camundongos , Subpopulações de Linfócitos T/imunologia
4.
Cell ; 162(5): 1113-26, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26317473

RESUMO

The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets with a protospacer adjacent motif (PAM) and complementarity to the guide RNA. Recently, we harnessed Staphylococcus aureus Cas9 (SaCas9), which is significantly smaller than Streptococcus pyogenes Cas9 (SpCas9), to facilitate efficient in vivo genome editing. Here, we report the crystal structures of SaCas9 in complex with a single guide RNA (sgRNA) and its double-stranded DNA targets, containing the 5'-TTGAAT-3' PAM and the 5'-TTGGGT-3' PAM, at 2.6 and 2.7 Å resolutions, respectively. The structures revealed the mechanism of the relaxed recognition of the 5'-NNGRRT-3' PAM by SaCas9. A structural comparison of SaCas9 with SpCas9 highlighted both structural conservation and divergence, explaining their distinct PAM specificities and orthologous sgRNA recognition. Finally, we applied the structural information about this minimal Cas9 to rationally design compact transcriptional activators and inducible nucleases, to further expand the CRISPR-Cas9 genome editing toolbox.


Assuntos
Proteínas de Bactérias/química , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Engenharia Genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , Alinhamento de Sequência , Streptococcus pyogenes/enzimologia
5.
Mol Cell ; 82(16): 3103-3118.e8, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35752172

RESUMO

The development of CRISPR-based barcoding methods creates an exciting opportunity to understand cellular phylogenies. We present a compact, tunable, high-capacity Cas12a barcoding system called dual acting inverted site array (DAISY). We combined high-throughput screening and machine learning to predict and optimize the 60-bp DAISY barcode sequences. After optimization, top-performing barcodes had ∼10-fold increased capacity relative to the best random-screened designs and performed reliably across diverse cell types. DAISY barcode arrays generated ∼12 bits of entropy and ∼66,000 unique barcodes. Thus, DAISY barcodes-at a fraction of the size of Cas9 barcodes-achieved high-capacity barcoding. We coupled DAISY barcoding with single-cell RNA-seq to recover lineages and gene expression profiles from ∼47,000 human melanoma cells. A single DAISY barcode recovered up to ∼700 lineages from one parental cell. This analysis revealed heritable single-cell gene expression and potential epigenetic modulation of memory gene transcription. Overall, Cas12a DAISY barcoding is an efficient tool for investigating cell-state dynamics.


Assuntos
Sistemas CRISPR-Cas , Código de Barras de DNA Taxonômico , Linhagem da Célula/genética , Código de Barras de DNA Taxonômico/métodos , Humanos , Aprendizado de Máquina , Filogenia
7.
Trends Genet ; 37(12): 1109-1123, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509299

RESUMO

Genetic variants play an important role in conferring risk for cardiovascular diseases (CVDs). With the rapid development of next-generation sequencing (NGS), thousands of genetic variants associated with CVDs have been identified by genome-wide association studies (GWAS), but the function of more than 40% of genetic variants is still unknown. This gap of knowledge is a barrier to the clinical application of the genetic information. However, determining the pathogenicity of a variant of uncertain significance (VUS) is challenging due to the lack of suitable model systems and accessible technologies. By combining clustered regularly interspaced short palindromic repeats (CRISPR) and human induced pluripotent stem cells (iPSCs), unprecedented advances are now possible in determining the pathogenicity of VUS in CVDs. Here, we summarize recent progress and new strategies in deciphering pathogenic variants for CVDs using CRISPR-edited human iPSCs.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Estudo de Associação Genômica Ampla , Humanos , Virulência
8.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394254

RESUMO

MOTIVATION: Gene set analysis methods rely on knowledge-based representations of genetic interactions in the form of both gene set collections and protein-protein interaction (PPI) networks. However, explicit representations of genetic interactions often fail to capture complex interdependencies among genes, limiting the analytic power of such methods. RESULTS: We propose an extension of gene set enrichment analysis to a latent embedding space reflecting PPI network topology, called gene set proximity analysis (GSPA). Compared with existing methods, GSPA provides improved ability to identify disease-associated pathways in disease-matched gene expression datasets, while improving reproducibility of enrichment statistics for similar gene sets. GSPA is statistically straightforward, reducing to a version of traditional gene set enrichment analysis through a single user-defined parameter. We apply our method to identify novel drug associations with SARS-CoV-2 viral entry. Finally, we validate our drug association predictions through retrospective clinical analysis of claims data from 8 million patients, supporting a role for gabapentin as a risk factor and metformin as a protective factor for severe COVID-19. AVAILABILITY AND IMPLEMENTATION: GSPA is available for download as a command-line Python package at https://github.com/henrycousins/gspa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Humanos , Reposicionamento de Medicamentos , Reprodutibilidade dos Testes , Estudos Retrospectivos , SARS-CoV-2
9.
Nucleic Acids Res ; 49(6): e36, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33619540

RESUMO

Several existing technologies enable short genomic alterations including generating indels and short nucleotide variants, however, engineering more significant genomic changes is more challenging due to reduced efficiency and precision. Here, we developed RecT Editor via Designer-Cas9-Initiated Targeting (REDIT), which leverages phage single-stranded DNA-annealing proteins (SSAP) RecT for mammalian genome engineering. Relative to Cas9-mediated homology-directed repair (HDR), REDIT yielded up to a 5-fold increase of efficiency to insert kilobase-scale exogenous sequences at defined genomic regions. We validated our REDIT approach using different formats and lengths of knock-in templates. We further demonstrated that REDIT tools using Cas9 nickase have efficient gene-editing activities and reduced off-target errors, measured using a combination of targeted sequencing, genome-wide indel, and insertion mapping assays. Our experiments inhibiting repair enzyme activities suggested that REDIT has the potential to overcome limitations of endogenous DNA repair steps. Finally, our REDIT method is applicable across cell types including human stem cells, and is generalizable to different Cas9 enzymes.


Assuntos
Proteína 9 Associada à CRISPR , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Edição de Genes/métodos , Linhagem Celular , Genoma , Humanos , Reparo de DNA por Recombinação , Células-Tronco/metabolismo
10.
Nature ; 520(7546): 186-91, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25830891

RESUMO

The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologues and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being more than 1 kilobase shorter. We packaged SaCas9 and its single guide RNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further assess the genome-wide targeting specificity of SaCas9 and SpCas9 using BLESS, and demonstrate that SaCas9-mediated in vivo genome editing has the potential to be efficient and specific.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Engenharia Genética/métodos , Genoma/genética , Staphylococcus aureus/enzimologia , Animais , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Colesterol/sangue , Colesterol/metabolismo , Marcação de Genes , Fígado/metabolismo , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/sangue , Pró-Proteína Convertases/deficiência , Pró-Proteína Convertases/genética , Serina Endopeptidases/biossíntese , Serina Endopeptidases/sangue , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Staphylococcus aureus/genética , Especificidade por Substrato
11.
J Am Chem Soc ; 141(16): 6545-6552, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30924644

RESUMO

Despite accelerating development of CRISPR technology, there remains high demand for further interrogation of its fundamental biology. This is particularly fascinating as new improved CRISPR tools were artificially engineered to harbor beneficial features but often lack mechanistic explanation. SaCas9, a minimal Cas9 ideal for in vivo applications, suffers from long protospacer adjacent motif (PAM), which prompted effort on mutant KKH SaCas9 with relaxed PAM requirement. Leveraging structure-based molecular dynamics simulation, free-energy perturbation, and targeted experimentation, we developed a workflow for probing SaCas9 and a series of its variants, revealing intriguing dynamics of PAM recognition and the molecular mechanism of KKH mutations. Furthermore, we deployed this approach to design and validate new mutant SaCas9, SaCas9-NR and SaCas9-RL, with enhanced targeting range distinctive from the KKH mutant and improved activity in mammalian cells. Overall, our approach provides a dynamic understanding of SaCas9 PAM recognition and a new gateway to enlighten rationally designed Cas9 variants harboring novel properties.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , DNA/genética , Simulação de Dinâmica Molecular , Staphylococcus aureus/enzimologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Mutação , Conformação Proteica , Engenharia de Proteínas
12.
Nature ; 500(7463): 472-476, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23877069

RESUMO

The dynamic nature of gene expression enables cellular programming, homeostasis and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high-precision spatiotemporal control of many cellular functions. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here we describe the development of light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical cofactors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of freely behaving mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states.


Assuntos
Epigênese Genética/genética , Epigênese Genética/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Luz , Optogenética/métodos , Transcrição Gênica/efeitos da radiação , Animais , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Cromatina/genética , Cromatina/efeitos da radiação , Criptocromos/metabolismo , Regulação da Expressão Gênica/genética , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos da radiação , Fatores de Tempo , Transcrição Gênica/genética , Técnicas do Sistema de Duplo-Híbrido , Vigília
13.
Mol Ther ; 26(12): 2751-2765, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301667

RESUMO

Increasing evidence indicates that tumor-initiating cells (TICs) are responsible for the occurrence, development, recurrence, and development of the drug resistance of cancer. MicroRNA (miRNA) plays a significant functional role by directly regulating targets of TIC-triggered non-small-cell lung cancer (NSCLC), but little is known about the function of the miR-30 family in TICs. In this study, we found the miR-30 family to be downregulated during the spheroid formation of NSCLC cells, and patients with lower miR-30a/c expression had shorter overall survival (OS) and progression-free survival (PFS). Moreover, transmembrane 4 super family member 1 (TM4SF1) was confirmed to be a direct target of miR-30a/c. Concomitant low expression of miR-30a/c and high expression of TM4SF1 correlated with a shorter median OS and PFS in NSCLC patients. miR-30a/c significantly inhibited stem-like characteristics in vitro and in vivo via suppression of its target gene TM4SF1, and then it inhibited the activity of the mTOR/AKT-signaling pathway. Thus, our data provide the first evidence that TM4SF1 is a direct target of miR-30a/c and miR-30a/c inhibits the stemness and proliferation of NSCLC cells by targeting TM4SF1, suggesting that miR-30a/c and TM4SF1 may be useful as tumor biomarkers for the diagnosis and treatment of NSCLC patients.


Assuntos
Antígenos de Superfície/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose/genética , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Família Multigênica , Oncogenes , Prognóstico , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Genome Res ; 25(8): 1147-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063738

RESUMO

The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional/métodos , RNA Guia de Cinetoplastídeos/metabolismo , DNA/análise , Técnicas de Inativação de Genes , Células HL-60 , Humanos , Modelos Genéticos , Taxa de Mutação
15.
Anal Biochem ; 532: 87-89, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28479380

RESUMO

Years of advances in high-throughput biotechnologies exemplified by nucleic acid sequencing and single-molecular imaging have led to our increasing capacity to interrogate genomes down to nucleotide accuracy with single-cell or even subcellular resolution, thereby gaining high-dimensional information on the genetic variants and epigenetic states associated with physiological and pathological processes. To achieve a causal understanding of the exquisite biology encoded in our genome, researchers in the past decades have sought to develop companion genome engineering tools. The ability to manipulate genetic information at similar resolution and genome-scale holds the promise to reveal fundamental insights into genomics research and has wide applications across many different fields. Technologies evolved from the naturally occurring Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) have emerged as a versatile platform to enable this goal through RNA-guided genome engineering. Here, researchers in the CRISPR genome-editing field have presented forward-looking reviews on different modalities and applications of this groundbreaking technology, with implications for basic biology, translational medicine, and beyond.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Engenharia Genética , Genômica/métodos , RNA Guia de Cinetoplastídeos/genética , Humanos
16.
Anal Biochem ; 494: 55-67, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26576833

RESUMO

Studies to determine subcellular localization and translocation of proteins are important because subcellular localization of proteins affects every aspect of cellular function. Such studies frequently utilize mutagenesis to alter amino acid sequences hypothesized to constitute subcellular localization signals. These studies often utilize fluorescent protein tags to facilitate live cell imaging. These methods are excellent for studies of monomeric proteins, but for multimeric proteins, they are unable to rule out artifacts from native protein subunits already present in the cells. That is, native monomers might direct the localization of fluorescent proteins with their localization signals obliterated. We have developed a method for ruling out such artifacts, and we use glucose 6-phosphate dehydrogenase (G6PD) as a model to demonstrate the method's utility. Because G6PD is capable of homodimerization, we employed a novel approach to remove interference from native G6PD. We produced a G6PD knockout somatic (hepatic) cell line using CRISPR-Cas9 mediated genome engineering. Transfection of G6PD knockout cells with G6PD fluorescent mutant proteins demonstrated that the major subcellular localization sequences of G6PD are within the N-terminal portion of the protein. This approach sets a new gold standard for similar studies of subcellular localization signals in all homodimerization-capable proteins.


Assuntos
Sistemas CRISPR-Cas/genética , Glucosefosfato Desidrogenase/metabolismo , Microscopia de Fluorescência , Animais , Linhagem Celular , Primers do DNA/metabolismo , Dimerização , Éxons , Técnicas de Inativação de Genes , Engenharia Genética , Glucosefosfato Desidrogenase/genética , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteína Vermelha Fluorescente
17.
Artigo em Inglês | MEDLINE | ID: mdl-26654204

RESUMO

This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, ß-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds.


Assuntos
Sedimentos Geológicos/microbiologia , Hidrocarbonetos Aromáticos/metabolismo , Trichosporon/isolamento & purificação , Trichosporon/metabolismo , Biodegradação Ambiental , Biofilmes , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Aromáticos/química , Poluição por Petróleo , Trichosporon/classificação , Trichosporon/genética , Vietnã
18.
Nat Methods ; 9(6): 591-3, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22484848

RESUMO

Multiplex automated genome engineering (MAGE) uses short oligonucleotides to scarlessly modify genomes; however, insertions >10 bases are still inefficient but can be improved substantially by selection of highly modified chromosomes. Here we describe 'coselection' MAGE (CoS-MAGE) to optimize biosynthesis of aromatic amino acid derivatives by combinatorially inserting multiple T7 promoters simultaneously into 12 genomic operons. Promoter libraries can be quickly generated to study gain-of-function epistatic interactions in gene networks.


Assuntos
Engenharia Genética/métodos , Regiões Promotoras Genéticas/genética , Automação Laboratorial , Bacteriófago T7/genética , Sequência de Bases , Cromossomos Bacterianos , Escherichia coli/genética , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Genoma , Genômica , Índigo Carmim , Indóis/metabolismo , Oligodesoxirribonucleotídeos
19.
Water Sci Technol ; 70(2): 329-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051481

RESUMO

In this study, three good biofilm-forming yeast strains, including Candida viswanathii TH1, Candida tropicalis TH4 and Trichosporon asahii B1, were isolated from oil-contaminated water and sediment samples collected in coastal zones of Vietnam. These strains were registered in the GenBank database with the accession numbers JX129175, JX129176 and KC139404 for strain TH1, TH4 and B1, respectively. The biofilm formed by a mixture of these organisms degraded 90, 85, 82 and 67% of phenol, naphthalene, anthracene and pyrene, respectively, after a 7-day incubation period using an initial concentration of 600 ppm phenol and 200 ppm of each of the other compounds. In addition, this biofilm completely degraded these aromatic compounds, which were from wastewater collected from petroleum tanks in Do Xa, Hanoi after 14 days of incubation based on gas chromatography mass spectrometry analysis. To the best of our knowledge, reports on polycyclic aromatic hydrocarbon and phenol degradation by biofilm-forming yeasts are limited. The results obtained indicate that the biofilm formed by multiple yeast strains may considerably increase the degradation efficiency of aromatic hydrocarbon compounds, and may lead to a new approach for eliminating petroleum oil-contaminated water in Vietnam.


Assuntos
Biofilmes/crescimento & desenvolvimento , Hidrocarbonetos Aromáticos/metabolismo , Petróleo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Leveduras/fisiologia , Reatores Biológicos , Hidrocarbonetos Aromáticos/química , Vietnã , Poluentes Químicos da Água/química , Poluição Química da Água
20.
Artigo em Inglês | MEDLINE | ID: mdl-24679085

RESUMO

This work is aimed to assess the aerobic biotransformation of a branched side chain alkylbenzene, iso-pentylbenzene, by Candida viswanathii TH1. The yeast Candida viswanathii TH1 isolated from oil-polluted sediments collected in coastal zones in Vietnam exhibited as a strain that could better transform branched aromatic hydrocarbons in biofilm (pellicle) than in planktonic form. During incubation of TH1 as biofilm with iso-pentylbenzene, the seven intermediates produced were benzoic acid, phenylacetic acid, 2-methyl-4-phenyl-butan-1-ol, 2-hydroxy-phenylacetic acid, 2-methyl-4-phenylbutyric acid, succinic acid and iso-valerophenone as revealed by gas chromatography/mass spectra and high-performance liquid chromatography analyses. The occurrence of these intermediates showed that iso-pentylbenzene could be oxidized not only via mono- but also by a sub-terminal oxidation pathway. This is the first study on iso-pentylbenzene transformation by a biofilm-forming Candida viswanathii strain. The catabolic versatility of the biofilm-forming strain TH1 and its use for mono and sub-terminal oxidation during the transformation of iso-pentylbenzene enhance our understanding of the degradation of branched side chain phenylalkanes and give new insight into the potential role of such species in the transformation of other recalcitrant aromatic compounds.


Assuntos
Benzeno/metabolismo , Biofilmes , Candida/fisiologia , Poluentes Ambientais/metabolismo , Sedimentos Geológicos/química , Poluição por Petróleo , Biodegradação Ambiental , Biotransformação , Cromatografia Gasosa , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA