Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619323

RESUMO

Regulation of chromatin states is essential for proper temporal and spatial gene expression. Chromatin states are modulated by remodeling complexes composed of components that have enzymatic activities. CHD4 is the catalytic core of the nucleosome remodeling and deacetylase (NuRD) complex, which represses gene transcription. However, it remains to be determined how CHD4, a ubiquitous enzyme that remodels chromatin structure, functions in cardiomyocytes to maintain heart development. In particular, whether other proteins besides the NuRD components interact with CHD4 in the heart is controversial. Using quantitative proteomics, we identified that CHD4 interacts with SMYD1, a striated muscle-restricted histone methyltransferase that is essential for cardiomyocyte differentiation and cardiac morphogenesis. Comprehensive transcriptomic and chromatin accessibility studies of Smyd1 and Chd4 null embryonic mouse hearts revealed that SMYD1 and CHD4 repress a group of common genes and pathways involved in glycolysis, response to hypoxia, and angiogenesis. Our study reveals a mechanism by which CHD4 functions during heart development, and a previously uncharacterized mechanism regarding how SMYD1 represses cardiac transcription in the developing heart.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Coração , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Miócitos Cardíacos , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Cromatina/metabolismo , Glicólise/genética , Coração/embriologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteômica , Transcrição Gênica
2.
Res Sq ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39070637

RESUMO

Background: Cardiac disease often manifests differently in terms of frequency and pathology between men and women. However, the mechanisms underlying these differences are not fully understood. The glycoprotein A1BG is necessary for proper cardiac function in females but not males. Despite this, the role of A1BG in the female heart remains poorly studied. Methods: To determine the sex differential function of A1BG, we generated a novel conditional A1bg allele and a novel conditional A1bg Rosa26 knockin allele. Histology, electrocardiography, transcriptional profiling (RNA-seq), transmission electron microscopy, western blot analyses, mass spectrometry, and immunohistochemistry were used to assess cardiac structure and function. Results: The study reveals that the absence of A1BG results in significant cardiac dysfunction in female but not male mice. Gene expression underscores that A1BG plays a critical role in metabolic processes and the integrity of intercalated discs in female cardiomyocytes. This dysfunction may be related to sex-specific A1BG cardiac interactomes and manifests as structural and functional alterations in the left ventricle indicative of dilated cardiomyopathy, thus suggesting a sex-specific requirement for A1BG in cardiac health. Conclusion: The loss of A1BG in cardiomyocytes leads to dilated cardiomyopathy in females, not males.

3.
J Cardiovasc Dev Dis ; 10(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132647

RESUMO

Males and females differ in the basic anatomy and physiology of the heart. Sex differences are evident in cardiac repolarization in humans; women have longer corrected QT and JT intervals. However, the molecular mechanisms that lead to these differences are incompletely understood. Here, we present that, like in humans, sex differences in QT and JT intervals exist in mouse models; female mice had longer corrected QT and JT intervals compared with age-matched males. To further understand the molecular underpinning of these sex differences, we developed a novel technology using fluorescent confocal microscopy that allows the simultaneous visualization of action potential, Ca2+ transients, and contractions in isolated cardiomyocytes at a high temporal resolution. From this approach, we uncovered that females at baseline have increased action potential duration, decreased Ca2+ release and reuptake rates, and decreased contraction and relaxation velocities compared with males. Additionally, males had a shorter overall time from action potential onset to peak contraction. In aggregate, our studies uncovered male and female differences in excitation-contraction coupling that account for differences observed in the EKG. Overall, a better understanding of sex differences in electrophysiology is essential for equitably treating cardiac disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA