Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pulm Pharmacol Ther ; 22(5): 407-16, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19409505

RESUMO

Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.


Assuntos
Citoesqueleto/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso/fisiologia , Mecânica Respiratória/fisiologia , Animais , Asma/fisiopatologia , Citoesqueleto/ultraestrutura , Humanos , Modelos Biológicos , Células Musculares/citologia , Células Musculares/ultraestrutura , Contração Muscular/fisiologia , Proteínas Musculares/ultraestrutura , Músculo Liso/citologia , Músculo Liso/fisiopatologia , Sistema Respiratório/citologia , Sistema Respiratório/fisiopatologia , Estresse Mecânico
2.
J Appl Physiol (1985) ; 111(4): 955-63, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737821

RESUMO

A deep inspiration (DI) temporarily relaxes agonist-constricted airways in normal subjects, but in asthma airways are refractory and may rapidly renarrow, possibly due to changes in the structure and function of airway smooth muscle (ASM). Chronic largely uniaxial cyclic strain of ASM cells in culture causes several structural and functional changes in ASM similar to that in asthma, including increases in contractility, MLCK content, shortening velocity, and shortening capacity. However, changes in recovery from acute stretch similar to a DI have not been measured. We have therefore measured the response and recovery to large stretches of cells modified by chronic stretching and investigated the role of MLCK. Chronic, 10% uniaxial cyclic stretch, with or without a strain gradient, was administered for up to 11 days to cultured cells grown on Silastic membranes. Single cells were then removed from the membrane and subjected to 1 Hz oscillatory stretches up to 10% of the in situ cell length. These oscillations reduced stiffness by 66% in all groups (P < 0.05). Chronically strained cells recovered stiffness three times more rapidly than unstrained cells, while the strain gradient had no effect. The stiffness recovery in unstrained cells was completely inhibited by the MLCK inhibitor ML-7, but recovery in strained cells exhibiting increased MLCK was slightly inhibited. These data suggest that chronic strain leads to enhanced recovery from acute stretch, which may be attributable to the strain-induced increases in MLCK. This may also explain in part the more rapid renarrowing of activated airways following DI in asthma.


Assuntos
Músculo Liso/metabolismo , Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Asma/metabolismo , Asma/fisiopatologia , Azepinas/farmacologia , Células Cultivadas , Cães , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/enzimologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Naftalenos/farmacologia , Estresse Mecânico , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/fisiologia
3.
Am J Physiol Lung Cell Mol Physiol ; 295(3): L479-88, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18586955

RESUMO

Chronic contractile activation, or tone, in asthma coupled with continuous stretching due to breathing may be involved in altering the contractile function of airway smooth muscle (ASM). Previously, we (11) showed that cytoskeletal remodeling and stiffening responses to acute (2 h) localized stresses were modulated by the level of contractile activation of ASM. Here, we investigated if altered contractility in response to chronic mechanical strain was dependent on repeated modulation of contractile tone. Cultured human ASM cells received 5% cyclic (0.3 Hz), predominantly uniaxial strain for 5 days, with once-daily dosing of either sham, forskolin, carbachol, or histamine to alter tone. Stiffness, contractility (KCl), and "relaxability" (forskolin) were then measured as was cell alignment, myosin light-chain phosphorylation (pMLC), and myosin light-chain kinase (MLCK) content. Cells became aligned and baseline stiffness increased with strain, but repeated lowering of tone inhibited both effects (P < 0.05). Strain also reversed a negative tone-modulation dependence of MLCK, observed in static conditions in agreement with previous reports, with strain and tone together increasing both MLCK and pMLC. Furthermore, contractility increased 176% (SE 59) with repeated tone elevation. These findings indicate that with strain, and not without, repeated tone elevation promoted contractile function through changes in cytoskeletal organization and increased contractile protein. The ability of repeated contractile activation to increase contractility, but only with mechanical stretching, suggests a novel mechanism for increased ASM contractility in asthma and for the role of continuous bronchodilator and corticosteroid therapy in reversing airway hyperresponsiveness.


Assuntos
Músculo Liso/fisiologia , Fenômenos Fisiológicos Respiratórios , Células Cultivadas , Citoesqueleto/fisiologia , Humanos , Contração Muscular/fisiologia , Músculo Liso/citologia , Quinase de Cadeia Leve de Miosina/metabolismo , Mecânica Respiratória/fisiologia , Sistema Respiratório/citologia , Estresse Mecânico
4.
Can J Physiol Pharmacol ; 83(10): 913-22, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16333363

RESUMO

Airway smooth muscle (ASM) cells are constantly under mechanical strain as the lung cyclically expands and deflates, and this stretch is now known to modulate the contractile function of ASM. However, depending on the experimental conditions, stretch is either beneficial or harmful limiting or enhancing contractile force generation, respectively. Stretch caused by a deep inspiration is known to be beneficial in limiting or reversing airway constriction in healthy individuals, and oscillatory stretch lowers contractile force and stiffness or lengthens muscle in excised airway tissue strips. Stretch in ASM culture has generally been reported to cause increased contractile function through increases in proliferation, contractile protein content, and organization of the cell cytoskeleton. Recent evidence indicates the type of stretch is critically important. Growing cells on flexible membranes where stretch is non-uniform and anisotropic leads to pro-contractile changes, whereas uniform biaxial stretch causes the opposite effects. Furthermore, the role of contractile tone might be important in modulating the response to mechanical stretch in cultured cells. This report will review the contrasting evidence for modulation of contractile function of ASM, both in vivo and in vitro, and summarize the recent evidence that mechanical stress applied either acutely within 2 h or chronically over 11 d is a potent stimulus for cytoskeletal remodelling and stiffening. We will also point to new data suggesting that perhaps some of the difference in response to stretch might lie with one of the fundamental differences in the ASM environment in asthma and in culture--the presence of elevated contractile tone.


Assuntos
Asma/fisiopatologia , Músculo Liso/fisiologia , Humanos , Contração Muscular , Miócitos de Músculo Liso/fisiologia , Sistema Respiratório , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA