Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Glob Chang Biol ; 30(1): e17095, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273478

RESUMO

The impacts of climate change are widespread and threaten natural systems globally. Yet, within regions, heterogeneous physical landscapes can differentially filter climate, leading to local response diversity. For example, it is possible that while freshwater lakes are sensitive to climate change, they may exhibit a diversity of thermal responses owing to their unique morphology, which in turn can differentially affect the growth and survival of vulnerable biota such as fishes. In particular, salmonids are cold-water fishes with complex life histories shaped by diverse freshwater habitats that are sensitive to warming temperatures. Here we examine the influence of habitat on the growth of sockeye salmon (Oncorhynchus nerka) in nursery lakes of Canada's Skeena River watershed over a century of change in regional temperature and intraspecific competition. We found that freshwater growth has generally increased over the last century. While growth tended to be higher in years with relatively higher summer air temperatures (a proxy for lake temperature), long-term increases in growth appear largely influenced by reduced competition. However, habitat played an important role in modulating the effect of high temperature. Specifically, growth was positively associated with rising temperatures in relatively deep (>50 m) nursery lakes, whereas warmer temperatures were not associated with a change in growth for fish among shallow lakes. The influence of temperature on growth also was modulated by glacier extent whereby the growth of fish from lakes situated in watersheds with little (i.e., <5%) glacier cover increased with rising temperatures, but decreased with rising temperatures for fish in lakes within more glaciated watersheds. Maintaining the integrity of an array of freshwater habitats-and the processes that generate and maintain them-will help foster a diverse climate-response portfolio for important fish species, which in turn can ensure that salmon watersheds are resilient to future environmental change.


Assuntos
Peixes , Salmão , Animais , Salmão/fisiologia , Rios , Lagos , Ecossistema , Mudança Climática
2.
Ecol Appl ; 32(8): e2709, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36131546

RESUMO

Variation among populations in life history and intrinsic population characteristics (i.e., population diversity) helps maintain resilience to environmental change and dampen interannual variability in ecosystem services. As a result, ecological variation, and the processes that generate it, is considered central to strategies for managing risks to ecosystems in an increasingly variable and uncertain world. However, characterizing population diversity is difficult, particularly in large and remote regions, which often prevents its formal consideration in management advice. We combined genetic stock identification of archived scale and tissue samples with state-space run-reconstruction models to estimate migration timing and annual return abundance for eight geographically and genetically distinct Chinook salmon populations within the Canadian portion of the Yukon River. We found that among-population variation in migration timing and return abundances resulted in aggregate return migrations that were 2.1 times longer and 1.4 times more stable than if they had composed a single homogeneous population. We then fit state-space spawner-recruitment models to the annual return abundances to characterize among-population diversity in intrinsic productivity and population size and their consequences for the fisheries they support. Productivity and carrying capacity varied among populations by approximately 2.4-fold (2.9 to 6.9 recruits per spawner) and three-fold (8800 to 27,000 spawners), respectively. This diversity implies an equilibrium trade-off between harvesting of the population aggregate and the conservation of individual populations whereby the harvest rate predicted to maximize aggregate harvests comes at the cost of overfishing ~40% of the populations but with a relatively low risk of extirpating the weakest ones. Our findings illustrate how population diversity in one of the largest salmon-producing river basins in the world contributes to fishery stability and food security in a region where salmon have high cultural and subsistence value. More generally, our work demonstrates the utility of molecular analyses of archived biological material for characterizing diversity in biological systems and its benefits and consequences for trade-offs in decision-making.


Assuntos
Pesqueiros , Salmão , Animais , Salmão/genética , Ecossistema , Conservação dos Recursos Naturais , Canadá
3.
Proc Biol Sci ; 287(1937): 20202010, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33081614

RESUMO

The spread of infection from reservoir host populations is a key mechanism for disease emergence and extinction risk and is a management concern for salmon aquaculture and fisheries. Using a quantitative environmental DNA methodology, we assessed pathogen environmental DNA in relation to salmon farms in coastal British Columbia, Canada, by testing for 39 species of salmon pathogens (viral, bacterial, and eukaryotic) in 134 marine environmental samples at 58 salmon farm sites (both active and inactive) over 3 years. Environmental DNA from 22 pathogen species was detected 496 times and species varied in their occurrence among years and sites, likely reflecting variation in environmental factors, other native host species, and strength of association with domesticated Atlantic salmon. Overall, we found that the probability of detecting pathogen environmental DNA (eDNA) was 2.72 (95% CI: 1.48, 5.02) times higher at active versus inactive salmon farm sites and 1.76 (95% CI: 1.28, 2.42) times higher per standard deviation increase in domesticated Atlantic salmon eDNA concentration at a site. If the distribution of pathogen eDNA accurately reflects the distribution of viable pathogens, our findings suggest that salmon farms serve as a potential reservoir for a number of infectious agents; thereby elevating the risk of exposure for wild salmon and other fish species that share the marine environment.


Assuntos
Aquicultura , DNA Ambiental , Animais , Colúmbia Britânica , Monitoramento Ambiental , Fazendas , Doenças dos Peixes , Pesqueiros , Salmo salar , Microbiologia da Água
4.
Am Nat ; 192(1): 49-61, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897803

RESUMO

The roles of dispersal and recruitment have long been a focal point in ecology and conservation. The adopted migrant hypothesis proposes a life history in which social learning transmits migratory knowledge between generations of iteroparous fish. Specifically, juveniles disperse from the parental spawning site, encounter and recruit to a local adult population, and learn migration routes between spawning and foraging habitats by following older, experienced fish. Although the adopted migrant life history may apply to many species of pelagic marine fishes, there is scant theoretical or empirical work on the consequent population dynamics. We developed and analyzed a mathematical model of this life history in which the recruitment of juveniles depends on the relative abundance of the local populations and recruitment overlap, which measures the ease with which juveniles are recruited by a nonparental population. We demonstrate that the adopted migrant life history can maintain spatial demographic structure among local populations, that it can also predispose local populations to collapse when a tipping point is crossed, and that recovery after collapse is impaired by reduced recruitment at small local population sizes.


Assuntos
Distribuição Animal , Migração Animal , Peixes , Modelos Biológicos , Aprendizado Social , Animais , Características de História de Vida , Dinâmica Populacional
5.
Ecology ; 97(7): 1887, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27859168

RESUMO

The global expansion of aquaculture has changed the structure of fish populations in coastal environments, with implications for disease dynamics. In Pacific Canada, farmed salmon act as reservoir hosts for parasites and pathogens, including sea lice (Lepeophtheirus salmonis and Caligus clemensi) that can transmit to migrating wild salmon. Assessing the impact of salmon farms on wild salmon requires regular monitoring of sea-louse infections on both farmed and wild fish. Since 2001, we have collected juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon annually at three sites in the Broughton Archipelago in British Columbia, Canada, during the annual juvenile salmon migration from fresh water to the open ocean. From sampled fish, we recorded counts of parasitic copepodid-, chalimus-, and motile-stage sea lice. We report louse abundances as well as supplementary observations of fish size, development, and health.


Assuntos
Copépodes/fisiologia , Monitoramento Ambiental , Salmão/parasitologia , Animais , Colúmbia Britânica , Doenças dos Peixes , Parasitos
6.
Proc Biol Sci ; 281(1776): 20132913, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24352951

RESUMO

The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host-parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations.


Assuntos
Copépodes/fisiologia , Cadeia Alimentar , Interações Hospedeiro-Parasita/fisiologia , Oncorhynchus/parasitologia , Animais , Colúmbia Britânica , Pesqueiros/estatística & dados numéricos , Funções Verossimilhança , Modelos Estatísticos , Mortalidade , Comportamento Predatório/fisiologia , Especificidade da Espécie
7.
Proc Natl Acad Sci U S A ; 108(35): 14700-4, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21873246

RESUMO

The ecological risks of salmon aquaculture have motivated changes to management and policy designed to protect wild salmon populations and habitats in several countries. In Canada, much attention has focused on outbreaks of parasitic copepods, sea lice (Lepeophtheirus salmonis), on farmed and wild salmon in the Broughton Archipelago, British Columbia. Several recent studies have reached contradictory conclusions on whether the spread of lice from salmon farms affects the productivity of sympatric wild salmon populations. We analyzed recently available sea lice data on farms and spawner-recruit data for pink (Oncorhynchus gorbuscha) and coho (Oncorhynchus kisutch) salmon populations in the Broughton Archipelago and nearby regions where farms are not present. Our results show that sea lice abundance on farms is negatively associated with productivity of both pink and coho salmon in the Broughton Archipelago. These results reconcile the contradictory findings of previous studies and suggest that management and policy measures designed to protect wild salmon from sea lice should yield conservation and fishery benefits.


Assuntos
Copépodes/fisiologia , Pesqueiros , Salmão/crescimento & desenvolvimento , Salmão/parasitologia , Animais
8.
Am Nat ; 179(3): 401-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22322227

RESUMO

Allee effects are thought to mediate the dynamics of population colonization, particularly for invasive species. However, Allee effects acting on parasites have rarely been considered in the analogous process of infectious disease establishment and spread. We studied the colonization of uninfected wild juvenile Pacific salmon populations by ectoparasitic salmon lice (Lepeophtheirus salmonis) over a 4-year period. In a data set of 68,376 fish, we observed 85 occurrences of precopular pair formation among 1,259 preadult female and 613 adult male lice. The probability of pair formation was dependent on the local abundance of lice, but this mate limitation is likely offset somewhat by mate-searching dispersal of males among host fish. A mathematical model of macroparasite population dynamics that incorporates the empirical results suggests a high likelihood of a demographic Allee effect, which can cause the colonizing parasite populations to die out. These results may provide the first empirical evidence for Allee effects in a macroparasite. Furthermore, the data give a rare detailed view of Allee effects in colonization dynamics and suggest that Allee effects may dampen the spread of parasites in a coastal marine ecosystem.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Modelos Biológicos , Oncorhynchus , Animais , Colúmbia Britânica , Ectoparasitoses/epidemiologia , Feminino , Aptidão Genética/fisiologia , Modelos Lineares , Masculino , Densidade Demográfica , Dinâmica Populacional , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia
9.
Ecol Appl ; 21(3): 897-914, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21639053

RESUMO

For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.


Assuntos
Aquicultura , Arguloida/fisiologia , Doenças dos Peixes/parasitologia , Comportamento Predatório , Salmão/fisiologia , Animais , Doenças Parasitárias em Animais/patologia , Dinâmica Populacional , Fatores de Risco
11.
Appl Spectrosc ; 70(5): 810-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27170779

RESUMO

While laser-induced breakdown spectroscopy (LIBS) has been in use for decades, only within the last two years has technology progressed to the point of enabling true handheld, self-contained instruments. Several instruments are now commercially available with a range of capabilities and features. In this paper, the SciAps Z-500 handheld LIBS instrument functionality and sub-systems are reviewed. Several assayed geochemical sample sets, including igneous rocks and soils, are investigated. Calibration data are presented for multiple elements of interest along with examples of elemental mapping in heterogeneous samples. Sample preparation and the data collection method from multiple locations and data analysis are discussed.


Assuntos
Sedimentos Geológicos/análise , Solo/química , Análise Espectral/instrumentação , Calibragem , Elementos Químicos , Desenho de Equipamento , Lasers , Análise Espectral/métodos
12.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26880836

RESUMO

Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host-parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Salmão , Animais , Ectoparasitoses/parasitologia , Modelos Biológicos
13.
PLoS One ; 9(4): e95718, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24760007

RESUMO

The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962-2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.


Assuntos
Salmão/fisiologia , Migração Animal/fisiologia , Animais , Canadá , Feminino , Masculino , Rios
14.
J Chem Phys ; 124(21): 214314, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16774414

RESUMO

We report the analyses of the three intermolecular combination bands of the hydrogen-bonded N2-HF complex at vHF=3, observed by molecular beam intracavity laser induced fluorescence. The origin of the HF intermolecular bending combination band, (3001(1)0)<--(00000), is 11 548.45(3) cm(-1), 328.2 cm(-1) higher than that of the (30000)<--(00000) transition with an origin at 11 220.250(1) cm(-1). The average rotational constant of the (3001(1)0) level is 0.103 63(1) cm(-1), a 4.8% reduction from B(30000)=0.109 21(1) cm(-1). Perturbations are observed as line splittings, increased line widths, and reduced peak intensities of a number of lines of the e and f components of (3001(1)0). In addition, the centrifugal distortion coefficients of both components are large, negative, and different. The N2 intermolecular bend transition (30001(1))<--(00000) has an origin at 11 288.706(1) cm(-1), 68.456(2) cm(-1) above that of the (30000)<--(00000) transition. This is the lowest combination state at v(HF)=3 level. It is unperturbed, yielding B(30001(1))=0.110.10(1) cm(-1). The transition to the intermolecular stretching state, (30100)<--(00000), has an origin at 11 318.858(1) cm(-1) with B(30100)=0.105 84(1) cm(-1). Both the (30100) and (30000) levels show an isolated perturbation at J=4. The Lorentzian component of the line widths, which show considerable variation with soft mode, are GammaL(30000)=490(30) MHz, GammaL(30100)=630(30) MHz, GammaL(3001(1)0)=250(30) MHz, and GammaL(30001(1))=500(50) MHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA