Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 20(1): 211, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705082

RESUMO

Grapevine Pinot gris virus (GPGV; genus Trichovirus in the family Betaflexiviridae) was detected in Australia in 2016, but its impact on the production of nursery material and fruit in Australia is still currently unknown. This study investigated the prevalence and genetic diversity of GPGV in Australia. GPGV was detected by reverse transcription-polymerase chain reaction (RT-PCR) in a range of rootstock, table and wine grape varieties from New South Wales, South Australia, and Victoria, with 473/2171 (21.8%) samples found to be infected. Genomes of 32 Australian GPGV isolates were sequenced and many of the isolates shared high nucleotide homology. Phylogenetic and haplotype analyses demonstrated that there were four distinct clades amongst the 32 Australian GPGV isolates and that there were likely to have been at least five separate introductions of the virus into Australia. Recombination and haplotype analysis indicate the emergence of new GPGV strains after introduction into Australia. When compared with 168 overseas GPGV isolates, the analyses suggest that the most likely origin of Australian GPGV isolates is from Europe. There was no correlation between specific GPGV genotypes and symptoms such as leaf mottling, leaf deformation, and shoot stunting, which were observed in some vineyards, and the virus was frequently found in symptomless grapevines.


Assuntos
Flexiviridae , Austrália , Filogenia , Flexiviridae/genética , Europa (Continente) , Frutas
2.
Artigo em Inglês | MEDLINE | ID: mdl-37486824

RESUMO

Within the 16SrII phytoplasma group, subgroups A-X have been classified based on restriction fragment length polymorphism of their 16S rRNA gene, and two species have been described, namely 'Candidatus Phytoplasma aurantifolia' and 'Ca. Phytoplasma australasia'. Strains of 16SrII phytoplasmas are detected across a broad geographic range within Africa, Asia, Australia, Europe and North and South America. Historically, all members of the 16SrII group share ≥97.5 % nucleotide sequence identity of their 16S rRNA gene. In this study, we used whole genome sequences to identify the species boundaries within the 16SrII group. Whole genome analyses were done using 42 phytoplasma strains classified into seven 16SrII subgroups, five 16SrII taxa without official 16Sr subgroup classifications, and one 16SrXXV-A phytoplasma strain used as an outgroup taxon. Based on phylogenomic analyses as well as whole genome average nucleotide and average amino acid identity (ANI and AAI), eight distinct 16SrII taxa equivalent to species were identified, six of which are novel descriptions. Strains within the same species had ANI and AAI values of >97 %, and shared ≥80 % of their genomic segments based on the ANI analysis. Species also had distinct biological and/or ecological features. A 16SrII subgroup often represented a distinct species, e.g., the 16SrII-B subgroup members. Members classified within the 16SrII-A, 16SrII-D, and 16SrII-V subgroups as well as strains classified as sweet potato little leaf phytoplasmas fulfilled criteria to be included as members of a single species, but with subspecies-level relationships with each other. The 16SrXXV-A taxon was also described as a novel phytoplasma species and, based on criteria used for other bacterial families, provided evidence that it could be classified as a distinct genus from the 16SrII phytoplasmas. As more phytoplasma genome sequences become available, the classification system of these bacteria can be further refined at the genus, species, and subspecies taxonomic ranks.


Assuntos
Phytoplasma , Humanos , Phytoplasma/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química
3.
J Gen Virol ; 103(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399124

RESUMO

Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.


Assuntos
Flexiviridae , Vírus , Flexiviridae/genética , Genoma Viral , Vírus/genética , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala
4.
Artigo em Inglês | MEDLINE | ID: mdl-33289625

RESUMO

In Australia, Stylosanthes little leaf (StLL) phytoplasma has been detected in Stylosanthes scabra Vogel, Arachis pintoi Krapov, Saccharum officinarum L., Carica papaya L., Medicago sativa L., and Solanum tuberosum L. The 16S rRNA gene sequence of StLL phytoplasma strains from S. scabra, C. papaya, S. officinarum and S. tuberosum were compared and share 99.93-100 % nucleotide sequence identity. Phylogenetic comparisons between the 16S rRNA genes of StLL phytoplasma and other 'Candidatus Phytoplasma' species indicate that StLL represents a distinct phytoplasma lineage. It shares its most recent known ancestry with 'Ca. Phytoplasma luffae' (16SrVIII-A), with which it has 97.17-97.25 % nucleotide identity. In silico RFLP analysis of the 16S rRNA amplicon using iPhyClassifier indicate that StLL phytoplasmas have a unique pattern (similarity coefficient below 0.85) that is most similar to that of 'Ca. Phytoplasma luffae'. The unique in silico RFLP patterns were confirmed in vitro. Nucleotide sequences of genes that are more variable than the 16S rRNA gene, namely tuf (tu-elongation factor), secA (partial translocation gene), and the partial ribosomal protein (rp) gene operon (rps19-rpl22-rps3), produced phylogenetic trees with similar branching patterns to the 16S rRNA gene tree. Sequence comparisons between the StLL 16S rRNA spacer region confirmed previous reports of rrn interoperon sequence heterogeneity for StLL, where the spacer region of rrnB encodes a complete tRNA-Isoleucine gene and the rrnA spacer region does not. Together these results suggest that the Australian phytoplasma, StLL, is unique according to the International Organization for Mycoplasmology (IRPCM) recommendations. The novel taxon 'Ca. Phytoplasma stylosanthis' is proposed, with the most recent strain from a potato crop in Victoria, Australia, serving as the reference strain (deposited in the Victorian Plant Pathology Herbarium as VPRI 43683).


Assuntos
Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Austrália , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genes Bacterianos , Especificidade de Hospedeiro , Tipagem de Sequências Multilocus , Óperon , Phytoplasma/isolamento & purificação , RNA Ribossômico 16S/genética , Proteínas Ribossômicas/genética , Análise de Sequência de DNA
5.
Artigo em Inglês | MEDLINE | ID: mdl-34003739

RESUMO

A phytoplasma was initially detected in Dypsis poivriana by nested and real-time PCR from the botanical gardens in Cairns, Queensland, Australia in 2017. Further surveys in the Cairns region identified phytoplasma infections in eight additional dying ornamental palm species (Euterpe precatoria, Cocos nucifera, Verschaffeltia splendida, Brassiophoenix drymophloeodes, Burretiokentia hapala, Cyrtostachys renda, Reinhardtia gracilis, Carpoxylon macrospermum), a Phoenix species, a Euterpe species and two native palms (Archontophoenix alexandrae). Analysis of 16S rRNA gene sequences showed that this phytoplasma is distinct as it shared less than 97.5 % similarity with all other 'Candidatus Phytoplasma' species. At 96.3 % similarity, the most closely related formally described member of the provisional 'Ca. Phytoplasma' genus was 'Ca. Phytoplasma noviguineense', a novel taxon from the island of New Guinea found in monocotyledonous plants. It was slightly more closely related (96.6-96.8 %) to four palm-infecting strains from the Americas, which belong to strain group 16SrIV and which have not been assigned to a formal 'Candidatus Phytoplasma' species taxon. Phylogenetic analysis of the 16S rRNA gene and ribosomal protein genes of the phytoplasma isolate from a dying coconut palm revealed that the phytoplasma represented a distinct lineage within the phytoplasma clade. As the nucleotide identity with other phytoplasmas is less than 97.5 % and the phylogenetic analyses show that it is distinct, a novel taxon 'Candidatus Phytoplasma dypsidis' is proposed for the phytoplasma found in Australia. Strain RID7692 (GenBank accession no. MT536195) is the reference strain. The impact and preliminary aspects of the epidemiology of the disease outbreak associated with this novel taxon are described.


Assuntos
Arecaceae/microbiologia , Cocos/microbiologia , Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Phytoplasma/isolamento & purificação , Queensland , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Plant Dis ; 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910731

RESUMO

Grapevine rupestris vein feathering virus (GRVFV; tentative genus Marafivirus; family Tymoviridae ) was first detected from a Greek grapevine (Vitis vinifera), with asteroid mosaic-like symptoms (El Beaino et al. 2001; Ghanem-Sabanadzovic et al. 2003) and was also infected with grapevine fleck virus. GRVFV has been detected in the United States, South Africa, Canada, Spain, China, New Zealand, Brazil, Germany, Korea, Slovakia, Hungary and Pakistan (Cho et al. 2018; Mahmood et al. 2019).Transmission vectors are currently unknown. In 2018, nine grapevine samples were collected between May to July in South Australia (SA) and Western Australia (WA) (Table S1), were analysed by high-throughput sequencing (HTS) to characterise grapevine viruses in Australian vineyards. Total RNA or double stranded RNA was extracted from grapevine canes using RNeasy 96 QIAcube HT kit (Qiagen) with MacKenzie buffer (MacKenzie et al. 1997) or using CF-11 (Balijja et al. 2008). Libraries were prepared using the NEBNext® Ultra II RNA library Prep Kit (NEB) or TruSeq® Stranded mRNA Prep kit (Illumina) with Ribo-Zero®gold plant kit for ribosomal depletion (Illumina, San Diego, CA). Libraries were sequenced using Illumina Miseq (SA) or Hiseq (WA) technology with 2x300 (SA) or 2x100 (WA) paired end reads which were trimmed using Trim Galore! (0.4.0) or BBmap (38.20), respectively. De novo assembly, using the SPAdes (version 3.12.0) genome assembler with default settings, resulted in twelve near full length GRVFV genomes (6713-6737nt), eight sequences from the WA samples and four from the SA samples. WA samples 171 and 178 and SA sample BV each had two distinct GRVFV molecular variants. Variants 171-1 and 171-2 (GenBank accessions MT084811, MT084812) from sample 171 shared 83.39% nucleotide (nt) identity. Variants 178-1 and 178-2 (MT084813, MT084814) from sample 178 shared 83.54% nt identity. Variants BV6799 and BV8822 (MN974274, MN974275) from sample BV shared 82.85% nt identity. Only one GRVFV sequence was obtained from all other samples. The genome of SA isolate LC1 (MN974273) was confirmed by RT-PCR amplification and Sanger sequencing of overlapping genome regions. Tissue from the infected LC1 isolate has been deposited into the Victorian plant pathogen reference collection (VPRI accession No. 43698). When the genomes of all Australian isolates were compared, they had 78.94% to 94.37 % nt identity with each other. The SA isolates LC1, BV8822, BV6799, and SEL-L (MN974276), and the WA isolates 172 (MT084807), 179 (MT084808), 180 (MT084809), and 182 (MT084810) were most closely related to the Swiss isolate CHASS (KY513702; 82.87% to 85.46% nt identity). The WA isolates 171-1, 171-2, 178-1 and 178-2 were most closely related to the New Zealand isolate Ch8021 (MF000325; 83.21% to 93.87%). Grapevine leafroll-associated virus 1 (GLRaV-1), GLRaV-3, GLRaV-4 (strain 6 and 9), grapevine virus A, grapevine rupestris stem pitting associated virus, grapevine yellow speckle viroid 1 and hop stunt viroid were also identified in the sequencing data. This is the first report of GRVFV in Australia. All WA samples were collected during dormancy and symptoms were not observed. Sample LC1 from SA had Shiraz disease, the other SA samples were asymptomatic, and none had asteroid mosaic-like symptoms. Further research is required to determine its distribution and association with disease in Australia.

7.
Plant Dis ; 104(7): 1969-1978, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32484421

RESUMO

Melon necrotic spot virus (MNSV) was detected in field-grown Cucumis melo (rockmelon) and Citrullus lanatus (watermelon) plants in the Sunraysia district of New South Wales and Victoria, Australia, in 2012, 2013, and 2016, and in two watermelon seed lots tested at the Australian border in 2016. High-throughput sequencing was used to generate near full-length genomes of six isolates detected during the incursions and seed testing. Phylogenetic analysis of the genomes suggests that there have been at least two incursions of MNSV into Australia and none of the field isolates were the same as the isolates detected in seeds. The analysis indicated that one watermelon field sample (L10), the Victorian rockmelon field sample, and two seed interception samples may have European origins. The results showed that two isolates (L8 and L9) from watermelon were divergent from the type MNSV strain (MNSV-GA, D12536.2) and had 99% nucleotide identity to two MNSV isolates from human stool collected in the United States (KY124135.1, KY124136.1). These isolates also had high nucleotide pairwise identity (96%) to a partial sequence from a Spanish MNSV isolate (KT962848.1). The analysis supported the identification of three previously described MNSV genotype groups: EU-LA, Japan melon, and Japan watermelon. To account for the greater diversity of hosts and geographic regions of the MNSV isolates used in this study, it is suggested that the genotype groups EU-LA, Japan melon, and Japan watermelon be renamed to groups I, II, and III, respectively. The divergent isolates L8 and L9 from this study and the stool isolates from the United States formed a fourth genotype group, group IV. Soil collected from the site of the Victorian rockmelon MNSV outbreak was found to contain viable MNSV and the virus vector, a chytrid fungus, Olpidium bornovanus (Sahtiyanci) Karling, 18 months after the initial MNSV detection. This is a first report of O. bornovanus from soil sampled from an MNSV-contaminated site in Australia.


Assuntos
Doenças das Plantas , Sementes , Japão , Filogenia , Tombusviridae , Vitória
8.
Glob Chang Biol ; 21(9): 3511-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25846559

RESUMO

Current atmospheric CO2 levels are about 400 µmol mol(-1) and are predicted to rise to 650 µmol mol(-1) later this century. Although the positive and negative impacts of CO2 on plants are well documented, little is known about interactions with pests and diseases. If disease severity increases under future environmental conditions, then it becomes imperative to understand the impacts of pathogens on crop production in order to minimize crop losses and maximize food production. Barley yellow dwarf virus (BYDV) adversely affects the yield and quality of economically important crops including wheat, barley and oats. It is transmitted by numerous aphid species and causes a serious disease of cereal crops worldwide. This study examined the effects of ambient (aCO2 ; 400 µmol mol(-1) ) and elevated CO2 (eCO2 ; 650 µmol mol(-1) ) on noninfected and BYDV-infected wheat. Using a RT-qPCR technique, we measured virus titre from aCO2 and eCO2 treatments. BYDV titre increased significantly by 36.8% in leaves of wheat grown under eCO2 conditions compared to aCO2 . Plant growth parameters including height, tiller number, leaf area and biomass were generally higher in plants exposed to higher CO2 levels but increased growth did not explain the increase in BYDV titre in these plants. High virus titre in plants has been shown to have a significant negative effect on plant yield and causes earlier and more pronounced symptom expression increasing the probability of virus spread by insects. The combination of these factors could negatively impact food production in Australia and worldwide under future climate conditions. This is the first quantitative evidence that BYDV titre increases in plants grown under elevated CO2 levels.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Produtos Agrícolas/virologia , Luteovirus/fisiologia , Doenças das Plantas/virologia , Triticum/virologia , Austrália , Interações Hospedeiro-Patógeno , Reação em Cadeia da Polimerase
9.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446015

RESUMO

In this study, metagenomic sequence data was used to investigate the phytoplasma taxonomic diversity in vegetable-growing regions across Australia. Metagenomic sequencing was performed on 195 phytoplasma-positive samples, originating either from historic collections (n=46) or during collection efforts between January 2015 and June 2022 (n=149). The sampled hosts were classified as crop (n=155), weed (n=24), ornamental (n=7), native plant (n=6), and insect (n=3) species. Most samples came from Queensland (n=78), followed by Western Australia (n=46), the Northern Territory (n=32), New South Wales (n=17), and Victoria (n=10). Of the 195 draft phytoplasma genomes, 178 met our genome criteria for comparison using an average nucleotide identity approach. Ten distinct phytoplasma species were identified and could be classified within the 16SrII, 16SrXII (PCR only), 16SrXXV, and 16SrXXXVIII phytoplasma groups, which have all previously been recorded in Australia. The most commonly detected phytoplasma taxa in this study were species and subspecies classified within the 16SrII group (n=153), followed by strains within the 16SrXXXVIII group ('Ca. Phytoplasma stylosanthis'; n=6). Several geographic- and host-range expansions were reported, as well as mixed phytoplasma infections of 16SrII taxa and 'Ca. Phytoplasma stylosanthis'. Additionally, six previously unrecorded 16SrII taxa were identified, including five putative subspecies of 'Ca. Phytoplasma australasiaticum' and a new putative 16SrII species. PCR and sequencing of the 16S rRNA gene was a suitable triage tool for preliminary phytoplasma detection. Metagenomic sequencing, however, allowed for higher-resolution identification of the phytoplasmas, including mixed infections, than was afforded by only direct Sanger sequencing of the 16S rRNA gene. Since the metagenomic approach theoretically obtains sequences of all organisms in a sample, this approach was useful to confirm the host family, genus, and/or species. In addition to improving our understanding of the phytoplasma species that affect crop production in Australia, the study also significantly expands the genomic sequence data available in public sequence repositories to contribute to phytoplasma molecular epidemiology studies, revision of taxonomy, and improved diagnostics.


Assuntos
Coinfecção , Phytoplasma , Verduras , Phytoplasma/genética , RNA Ribossômico 16S/genética , Metagenoma , Vitória
10.
Viruses ; 15(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37243191

RESUMO

Grapevine leafroll disease affects the health status of grapevines worldwide. Most studies in Australia have focused on grapevine leafroll-associated viruses 1 and 3, while little attention has been given to other leafroll virus types, in particular, grapevine leafroll-associated virus 2 (GLRaV-2). A chronological record of the temporal occurrence of GLRaV-2 in Australia since 2001 is reported. From a total of 11,257 samples, 313 tested positive, with an overall incidence of 2.7%. This virus has been detected in 18 grapevine varieties and Vitis rootstocks in different regions of Australia. Most varieties were symptomless on their own roots, while Chardonnay showed a decline in virus-sensitive rootstocks. An isolate of GLRaV-2, on own-rooted Vitis vinifera cv. Grenache, clone SA137, was associated with severe leafroll symptoms after veraison with abnormal leaf necrosis. The metagenomic sequencing results of the virus in two plants of this variety confirmed the presence of GLRaV-2, as well as two inert viruses, grapevine rupestris stem pitting-associated virus (GRSPaV) and grapevine rupestris vein feathering virus (GRVFV). No other leafroll-associated viruses were detected. Among the viroids, hop stunt viroid and grapevine yellow speckle viroid 1 were detected. Of the six phylogenetic groups identified in GLRaV-2, we report the presence of four groups in Australia. Three of these groups were detected in two plants of cv. Grenache, without finding any recombination event. The hypersensitive reaction of certain American hybrid rootstocks to GLRaV-2 is discussed. Due to the association of GLRaV-2 with graft incompatibility and vine decline, the risk from this virus in regions where hybrid Vitis rootstocks are used cannot be overlooked.


Assuntos
Closterovirus , Viroides , Vitis , Filogenia , Doenças das Plantas
11.
Viruses ; 15(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37112863

RESUMO

Seed lots of tomato and capsicum (Solanum lycopersicon and Capsicum annuum, respectively) are required to be free of quarantine pests before their entry to Australia is permitted. Testing of samples from 118 larger seed lots in the period 2019-2021 revealed that 31 (26.3%) carried one or more of four Tobamovirus species, including tomato mottle mosaic virus (ToMMV), which is a quarantine pest for Australia. Testing of samples from a further 659 smaller seed lots showed that 123 (18.7%) carried a total of five Tobamovirus species, including ToMMV and tomato brown rugose fruit virus (ToBRFV), which is also a quarantine pest for Australia. Estimated prevalence of contamination by tobamoviruses ranged from 0.388% to 0.004% in contaminated larger seed lots. Analyses of these data allow us to estimate probabilities of detection of contamination under different regulatory settings.


Assuntos
Capsicum , Solanum lycopersicum , Tobamovirus , Tobamovirus/genética , Prevalência , Doenças das Plantas , Sementes
12.
Viruses ; 16(1)2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38257742

RESUMO

Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.


Assuntos
Flexiviridae , Variação Genética , Austrália , Fazendas , Austrália do Sul
13.
Viruses ; 15(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36992392

RESUMO

Cucumber green mottle mosaic virus (CGMMV) is a Tobamovirus of economic importance affecting cucurbit crops and Asian cucurbit vegetables. Non-host crops of CGMMV, including capsicum (Capsicum annum), sweetcorn (Zea mays), and okra (Abelmoschus esculentus), were tested for their susceptibility to the virus, with field and glasshouse trials undertaken. After 12 weeks post-sowing, the crops were tested for the presence of CGMMV, and in all cases, no CGMMV was detected. Commonly found within the growing regions of cucurbits and melons worldwide are weeds, such as black nightshade (Solanum nigrum), wild gooseberry (Physalis minima), pigweed (Portulaca oleracea), and Amaranth species. Several weeds/grasses were tested for their ability to become infected with CGMMV by inoculating weeds directly with CGMMV and routinely testing over a period of eight weeks. Amaranthus viridis was found to be susceptible, with 50% of the weeds becoming infected with CGMMV. To further analyse this, six Amaranth samples were used as inoculum on four watermelon seedlings per sample and tested after eight weeks. CGMMV was detected in three of six watermelon bulk samples, indicating that A. viridis is a potential host/reservoir for CGMMV. Further research into the relationship between CGMMV and weed hosts is required. This research also highlights the importance of proper weed management to effectively manage CGMMV.


Assuntos
Cucurbitaceae , Doenças das Plantas , Plantas Daninhas , Tobamovirus , Cucurbitaceae/virologia , Doenças das Plantas/virologia , Tobamovirus/patogenicidade , Tobamovirus/fisiologia , Reservatórios de Doenças/virologia , Plantas Daninhas/virologia
14.
Viruses ; 15(3)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36992452

RESUMO

The detection of cucumber green mottle mosaic (CGMMV) in the Northern Territory (NT), Australia, in 2014 led to the introduction of strict quarantine measures for the importation of cucurbit seeds by the Australian federal government. Further detections in Queensland, Western Australia (WA), New South Wales and South Australia occurred in the period 2015-2020. To explore the diversity of the current Australian CGMMV population, 35 new coding sequence complete genomes for CGMMV isolates from Australian incursions and surveys were prepared for this study. In conjunction with published genomes from the NT and WA, sequence, phylogenetic, and genetic variation and variant analyses were performed, and the data were compared with those for international CGMMV isolates. Based on these analyses, it can be inferred that the Australian CGMMV population resulted from a single virus source via multiple introductions.


Assuntos
Citrullus , Cucumis sativus , Tobamovirus , Filogenia , Biosseguridade , Tobamovirus/genética , Northern Territory , Doenças das Plantas/prevenção & controle
15.
Viruses ; 15(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36992482

RESUMO

Shiraz disease (SD) is an economically important virus-associated disease that can significantly reduce yield in sensitive grapevine varieties and has so far only been reported in South Africa and Australia. In this study, RT-PCR and metagenomic high-throughput sequencing was used to study the virome of symptomatic and asymptomatic grapevines within vineyards affected by SD and located in South Australia. Results showed that grapevine virus A (GVA) phylogroup II variants were strongly associated with SD symptoms in Shiraz grapevines that also had mixed infections of viruses including combinations of grapevine leafroll-associated virus 3 (GLRaV-3) and grapevine leafroll-associated virus 4 strains 5, 6 and 9 (GLRaV-4/5, GLRaV-4/6, GLRaV-4/9). GVA phylogroup III variants, on the other hand, were present in both symptomatic and asymptomatic grapevines, suggesting no or decreased virulence of these strains. Similarly, only GVA phylogroup I variants were found in heritage Shiraz grapevines affected by mild leafroll disease, along with GLRaV-1, suggesting this phylogroup may not be associated with SD.


Assuntos
Flexiviridae , Vitis , Doenças das Plantas , Flexiviridae/genética , Austrália/epidemiologia , Metagenoma
16.
Microbiol Resour Announc ; 12(11): e0053623, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847022

RESUMO

High-quality complete genomes of five Xylella fastidiosa strains were assembled by combining Nanopore and Illumina sequencing data. Among these, International Collection of Micro-organisms from Plants (ICMP) 8731, ICMP 8742 and ICMP 8745 belong to subspecies fastidiosa while ICMP 8739 and ICMP 8740 were determined as subspecies multiplex. The strains were further classified into sequence types.

17.
Phys Chem Chem Phys ; 14(29): 10119-21, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22735595

RESUMO

We report on the use of protic ionic liquids, pILs, as solvents for the solubilisation and stabilization of viruses. We show that the shelf life of the pIL stabilized tobacco mosaic virus is significantly enhanced when compared to traditional phosphate buffer. This has new opportunities for the preparation, characterization and storage of viruses and virus based technologies.


Assuntos
Líquidos Iônicos/farmacologia , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Solanum lycopersicum/virologia , Folhas de Planta/virologia , Vírus do Mosaico do Tabaco/química
18.
Plants (Basel) ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406864

RESUMO

Cucumber green mottle mosaic virus (CGMMV) is a Tobamovirus of economic importance affecting cucurbit crops and Asian cucurbit vegetables. CGMMV was detected in the Northern Territory (NT) in September 2014, the first record for Australia, with 26 properties confirmed as of May 2016. Research was undertaken to determine virus longevity in soils in the NT and investigate the use of disinfectants to remove viable CGMMV from the soil. An in-field trial at 12 months post-quarantine at four properties, and bioassays from collected soils indicate that CGMMV remained viable in at least two of the properties 12 months after plant hosts were removed from the ground. The infectivity of CGMMV from soil was also investigated in two trials with 140 watermelon seeds and 70 watermelon plants sown into CGMMV infested soils with or without the application of the disinfectants VirkonTM (2%) and Bleach (1%). Watermelons grown in soil, not treated with the VirkonTM or Bleach, showed CGMMV infection rates of 4% and 2.5% respectively. When VirkonTM or Bleach was applied, no positive CGMMV detections were observed in the watermelons. This research highlights the importance of proper management of infested properties and the need for on-farm biosecurity to manage CGMMV.

19.
Front Microbiol ; 13: 937648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033837

RESUMO

Obtaining complete phytoplasma genomes is difficult due to the lack of a culture system for these bacteria. To improve genome assembly, a non-ionic, low- and iso-osmotic iodixanol (Optiprep™) density gradient centrifugation method was developed to enrich for phytoplasma cells and deplete plant host tissues prior to deoxyribonucleic acid (DNA) extraction and high-throughput sequencing (HTS). After density gradient enrichment, potato infected with a 'Candidatus Phytoplasma australasia'-related strain showed a ∼14-fold increase in phytoplasma HTS reads, with a ∼1.7-fold decrease in host genomic reads compared to the DNA extracted from the same sample without density gradient centrifugation enrichment. Additionally, phytoplasma genome assemblies from libraries equalized to 5 million reads were, on average, ∼15,000 bp larger and more contiguous (N50 ∼14,800 bp larger) than assemblies from the DNA extracted from the infected potato without enrichment. The method was repeated on capsicum infected with Sweet Potato Little Leaf phytoplasma ('Ca. Phytoplasma australasia'-related strain) with a lower phytoplasma titer than the potato. In capsicum, ∼threefold more phytoplasma reads and ∼twofold less host genomic reads were obtained, with the genome assembly size and N50 values from libraries equalized to 3.4 million reads ∼137,000 and ∼4,000 bp larger, respectively, compared to the DNA extracted from infected capsicum without enrichment. Phytoplasmas from potato and capsicum were both enriched at a density of 1.049-1.058 g/ml. Finally, we present two highly contiguous 'Ca. Phytoplasma australasia' phytoplasma reference genomes sequenced from naturally infected Solanaceae hosts in Australia. Obtaining high-quality phytoplasma genomes from naturally infected hosts will improve insights into phytoplasma taxonomy, which will improve their detection and disease management.

20.
Viruses ; 14(7)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35891459

RESUMO

High-throughput sequencing (HTS) of host plant small RNA (sRNA) is a popular approach for plant virus and viroid detection. The major bottlenecks for implementing this approach in routine virus screening of plants in quarantine include lack of computational resources and/or expertise in command-line environments and limited availability of curated plant virus and viroid databases. We developed: (1) virus and viroid report web-based bioinformatics workflows on Galaxy Australia called GA-VirReport and GA-VirReport-Stats for detecting viruses and viroids from host plant sRNA extracts and (2) a curated higher plant virus and viroid database (PVirDB). We implemented sRNA sequencing with unique dual indexing on a set of plants with known viruses. Sequencing data were analyzed using GA-VirReport and PVirDB to validate these resources. We detected all known viruses in this pilot study with no cross-sample contamination. We then conducted a large-scale diagnosis of 105 imported plants processed at the post-entry quarantine facility (PEQ), Australia. We detected various pathogens in 14 imported plants and discovered that de novo assembly using 21-22 nt sRNA fraction and the megablast algorithm yielded better sensitivity and specificity. This study reports the successful, large-scale implementation of HTS and a user-friendly bioinformatics workflow for virus and viroid screening of imported plants at the PEQ.


Assuntos
Vírus de Plantas , Pequeno RNA não Traduzido , Viroides , Biologia Computacional , Internet , Projetos Piloto , Doenças das Plantas , Vírus de Plantas/genética , Plantas , Quarentena , RNA de Plantas , Viroides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA