Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Photochem Photobiol Sci ; 22(2): 279-302, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36152272

RESUMO

Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO's uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 µM. Additionally, TBO (40 µM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Mitocôndrias Hepáticas , Ratos , Animais , Mitocôndrias Hepáticas/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia , Metabolismo Energético , Fármacos Fotossensibilizantes/farmacologia , Trifosfato de Adenosina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
2.
J Biol Inorg Chem ; 26(6): 641-658, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304317

RESUMO

In the present work, the multiple-indicator dilution (MID) technique was used to investigate the kinetic mechanisms by which nickel (Ni2+) affects the calcium (Ca2+) transport in intact rat liver. 45Ca2+ and extra- and intracellular space indicators were injected in livers perfused with 1 mM Ni2+, and the outflow profiles were analyzed by a mathematical model. For comparative purposes, the effects of norepinephrine were measured. The influence of Ni2+ on the cytosolic Ca2+ concentration ([Ca2+]c) in human hepatoma Huh7 cells and on liver glycogen catabolism, a biological response sensitive to cellular Ca2+, was also evaluated. The estimated transfer coefficients of 45Ca2+ transport indicated two mechanisms by which Ni2+ increases the [Ca2+]c in liver under steady-state conditions: (1) an increase in the net efflux of Ca2+ from intracellular Ca2+ stores due to a stimulus of Ca2+ efflux to the cytosolic space along with a diminution of Ca2+ re-entry into the cellular Ca2+ stores; (2) a decrease in Ca2+ efflux from the cytosolic space to vascular space, minimizing Ca2+ loss. Glycogen catabolism activated by Ni2+ was transient contrasting with the sustained activation induced by norepinephrine. Ni2+ caused a partial reduction in the norepinephrine-induced stimulation in the [Ca2+]c in Huh7 cells. Our data revealed that the kinetic parameters of Ca2+ transport modified by Ni2+ in intact liver are similar to those modified by norepinephrine in its first minutes of action, but the membrane receptors or Ca2+ transporters affected by Ni2+ seem to be distinct from those known to be modulated by norepinephrine.


Assuntos
Cálcio/metabolismo , Fígado/metabolismo , Níquel/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Masculino , Modelos Biológicos , Norepinefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Vasoconstritores/farmacologia
3.
Aging Male ; 23(5): 1296-1315, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32406295

RESUMO

Testosterone is the predominant androgen in men and the lack of it can be a trigger to the development of the metabolic syndrome. Here we review the relationship between testosterone deficiency, metabolic syndrome, and hepatic steatosis reported by studies with men and rodents. The prevalence of metabolic syndrome and testosterone deficiency is higher among older subjects. Low total and free testosterone levels were positively associated with disturbs on energy metabolism, changes in body fat distribution, and body composition. Studies reported visceral fat accumulation in men with hypogonadism and castrated rats. Despite some contradictions, the association between higher adiposity, low testosterone, and metabolic syndrome was a common point among the studies. Few studies evaluated the hepatic steatosis and found an association with hypogonadism. Most of the studies with rodents combined the castration with a high-fat diet to study metabolic disturbs. The importance of proper levels of testosterone for energy metabolism homeostasis in men was also underlined by studies that investigated the metabolic effects of testosterone replacement therapy and androgen deprivation therapy.


Assuntos
Hipogonadismo , Síndrome Metabólica , Neoplasias da Próstata , Antagonistas de Androgênios , Animais , Humanos , Hipogonadismo/complicações , Masculino , Síndrome Metabólica/etiologia , Ratos , Roedores , Testosterona
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(7): 2495-2509, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29653185

RESUMO

The present study was planned to improve our understanding about sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Female (FCaf) and male (MCaf) mice fed a cafeteria diet had similar body weight gain and adiposity index, but FCaf had a more extensive steatosis than MCaf. FCaf livers exhibited a higher non-alcoholic fatty liver disease activity score, elevated lipid percentage area (+34%) in Sudan III staining and increased TG content (+25%) compared to MCaf. Steatosis in FCaf was not correlated with changes in the transcript levels of lipid metabolism-related genes, but a reduced VLDL release rate was observed. Signs of oxidative stress were found in FCaf livers, as elevated malondialdehyde content (+110%), reduced catalase activity (-36%) and increased Nrf2 and Hif1a mRNA expression compared to MCaf. Interestingly, fibroblast growth factor 21 (Fgf21) mRNA expression was found to be exclusively induced in MCaf, which also exhibited higher FGF21 serum levels (+416%) and hepatic protein abundance (+163%) than FCaf. Moreover, cafeteria diet increased Fgfr1, Fsp27 and Ucp1 mRNA expression in brown adipose tissue of males (MCaf), but not females (FCaf). FGF21 hepatic production by male mice seems to be part of a complex network of responses to the nutritional stress of the cafeteria diet, probably related to the unfolded protein response activation. Although aimed at the restoration of hepatic metabolic homeostasis, the branch involving Fgf21 upregulation seems to be impaired in females, rendering them incapable of reducing the hepatic lipid content and cellular oxidative stress.


Assuntos
Dieta/efeitos adversos , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Animais , Feminino , Fatores de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/patologia , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/patologia
5.
Mol Cell Biochem ; 373(1-2): 265-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23117227

RESUMO

Most studies using a hypercaloric diet to induce obesity have focused on the metabolism of fat and carbohydrates. Less concern has been given to the metabolism of amino acids, despite evidence of modifications in nitrogen metabolism during obesity. The aim of this study was to evaluate amino acid metabolism in livers from cafeteria diet-induced obese rats. Blood parameters were analysed, and histological sections of livers were stained with Sudan III. The enzymatic activities of some enzymes were determined in liver homogenates. Gluconeogenesis, ureagenesis, and oxygen consumption were evaluated in rat livers perfused with glutamine, alanine, or ammonium chloride. Compared to control rats, cafeteria-fed rats demonstrated higher levels of triacylglycerol and glucose in the blood and greater accumulation of fat in livers. Gluconeogenesis and urea production in livers perfused with glutamine and alanine at higher concentrations showed a substantial reduction in cafeteria-fed rats. However, no significant difference was observed among groups perfused with ammonium chloride. The activities of the enzymes alanine aminotransferase, glutaminase, and aspartate aminotransferase in the livers were reduced in cafeteria-fed rats. Taken together, these data are consistent with the hypothesis that livers from cafeteria diet-induced obese rats exhibit a limitation in their maximal capacity to metabolise glutamine and alanine to glucose, ammonia, and urea, not because of an impairment in gluconeogenesis and/or ureagenesis, but rather due to a depression in the activities of enzymes that catalyse the initial steps of amino acid metabolism.


Assuntos
Aminoácidos/metabolismo , Fígado/metabolismo , Obesidade Abdominal/metabolismo , Amônia/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Glicemia , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Glutamato Desidrogenase/metabolismo , Técnicas In Vitro , Ácido Láctico/sangue , Metabolismo dos Lipídeos , Masculino , Obesidade Abdominal/etiologia , Consumo de Oxigênio , Ratos , Ratos Wistar , Triglicerídeos/sangue , Ureia/metabolismo
6.
Toxicol Lett ; 383: 1-16, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217012

RESUMO

Clomipramine, a tricyclic antidepressant used to treat depression and obsessive-compulsive disorder, has been linked to a few cases of acute hepatotoxicity. It is also recognized as a compound that hinders the functioning of mitochondria. Hence, the effects of clomipramine on mitochondria should endanger processes that are somewhat connected to energy metabolism in the liver. For this reason, the primary aim of this study was to examine how the effects of clomipramine on mitochondrial functions manifest in the intact liver. For this purpose, we used the isolated perfused rat liver, but also isolated hepatocytes and isolated mitochondria as experimental systems. According to the findings, clomipramine harmed metabolic processes and the cellular structure of the liver, especially the membrane structure. The considerable decrease in oxygen consumption in perfused livers strongly suggested that the mechanism of clomipramine toxicity involves the disruption of mitochondrial functions. Coherently, it could be observed that clomipramine inhibited both gluconeogenesis and ureagenesis, two processes that rely on ATP production within the mitochondria. Half-maximal inhibitory concentrations for gluconeogenesis and ureagenesis ranged from 36.87 µM to 59.64 µM. The levels of ATP as well as the ATP/ADP and ATP/AMP ratios were reduced, but distinctly, between the livers of fasted and fed rats. The results obtained from experiments conducted on isolated hepatocytes and isolated mitochondria unambiguously confirmed previous propositions about the effects of clomipramine on mitochondrial functions. These findings revealed at least three distinct mechanisms of action, including uncoupling of oxidative phosphorylation, inhibition of the FoF1-ATP synthase complex, and inhibition of mitochondrial electron flow. The elevation in activity of cytosolic and mitochondrial enzymes detected in the effluent perfusate from perfused livers, coupled with the increase in aminotransferase release and trypan blue uptake observed in isolated hepatocytes, provided further evidence of the hepatotoxicity of clomipramine. It can be concluded that impaired mitochondrial bioenergetics and cellular damage are important factors underlying the hepatotoxicity of clomipramine and that taking excessive amounts of clomipramine can lead to several risks including decreased ATP production, severe hypoglycemia, and potentially fatal outcomes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clomipramina , Ratos , Animais , Clomipramina/toxicidade , Clomipramina/metabolismo , Metabolismo Energético , Fígado/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mitocôndrias Hepáticas/metabolismo
7.
Plant Physiol Biochem ; 204: 108127, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890229

RESUMO

Enzymes of the sulfur assimilation pathway of plants have been identified as potential targets for herbicide development, given their crucial role in synthesizing amino acids, coenzymes, and various sulfated compounds. In this pathway, O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) catalyzes the synthesis of L-cysteine through the incorporation of sulfate into O-acetylserine (OAS). This study used an in silico approach to select seven inhibitors for OAS-TL. The in silico experiments revealed that S-benzyl-L-cysteine (SBC) had a better docking score (-7.0 kcal mol-1) than the substrate OAS (-6.6 kcal mol-1), indicating its suitable interaction with the active site of the enzyme. In vitro experiments showed that SBC is a non-competitive inhibitor of OAS-TL from Arabidopsis thaliana expressed heterologously in Escherichia coli, with a Kic of 4.29 mM and a Kiu of 5.12 mM. When added to the nutrient solution, SBC inhibited the growth of maize and morning glory weed plants due to the reduction of L-cysteine synthesis. Remarkably, morning glory was more sensitive than maize. As proof of its mechanism of action, L-cysteine supplementation to the nutrient solution mitigated the inhibitory effect of SBC on the growth of morning glory. Taken together, our data suggest that reduced L-cysteine synthesis is the primary cause of growth inhibition in maize and morning glory plants exposed to SBC. Furthermore, our findings indicate that inhibiting OAS-TL could potentially be a novel approach for herbicidal action.


Assuntos
Arabidopsis , Herbicidas , Liases , Arabidopsis/metabolismo , Cisteína , Cisteína Sintase/metabolismo , Herbicidas/farmacologia , Plantas/metabolismo , Compostos de Sulfidrila/metabolismo
8.
Plant Physiol Biochem ; 178: 12-19, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247693

RESUMO

Lignin is a technological bottleneck to convert polysaccharides into fermentable sugars, and different strategies of genetic-based metabolic engineering have been applied to improve biomass saccharification. Using maize seedlings grown hydroponically for 24 h, we conducted a quick non-transgenic approach with five enzyme inhibitors of the lignin and tricin pathways. Two compounds [3,4-(methylenedioxy)cinnamic acid: MDCA and 2,4-pyridinedicarboxylic acid: PDCA] revealed interesting findings on root growth, lignin composition, and saccharification. By inhibiting hydroxycinnamoyl-CoA ligase, a key enzyme of phenylpropanoid pathway, MDCA decreased the lignin content and improved saccharification, but it decreased root growth. By inhibiting flavone synthase, a key enzyme of tricin biosynthesis, PDCA decreased total lignin content and improved saccharification without affecting root growth. PDCA was three-fold more effective than MDCA, suggesting that controlling lignin biosynthesis with enzymatic inhibitors may be an attractive strategy to improve biomass saccharification.


Assuntos
Lignina , Zea mays , Biomassa , Parede Celular/metabolismo , Flavonoides , Lignina/metabolismo
9.
Chem Biol Interact ; 364: 110054, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872042

RESUMO

The current study sought to evaluate the acute effects of phloretin (PH) on metabolic pathways involved in the maintenance of glycemia, specifically gluconeogenesis and glycogenolysis, in the perfused rat liver. The acute effects of PH on energy metabolism and toxicity parameters in isolated hepatocytes and mitochondria, as well as its effects on the activity of a few key enzymes, were also evaluated. PH inhibited gluconeogenesis from different substrates, stimulated glycogenolysis and glycolysis, and altered oxygen consumption. The citric acid cycle activity was inhibited by PH under gluconeogenic conditions. Similarly, PH reduced the cellular ATP/ADP and ATP/AMP ratios under gluconeogenic and glycogenolytic conditions. In isolated mitochondria, PH inhibited the electron transport chain and the FoF1-ATP synthase complex as well as acted as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of ATP. PH also decreased the activities of malate dehydrogenase, glutamate dehydrogenase, glucose 6-phosphatase, and glucose 6-phosphate dehydrogenase. Part of the bioenergetic effects observed in isolated mitochondria was shown in isolated hepatocytes, in which PH inhibited mitochondrial respiration and decreased ATP levels. An aggravating aspect might be the finding that PH promotes the net oxidation of NADH, which contradicts the conventional belief that the compound operates as an antioxidant. Although trypan blue hepatocyte viability tests revealed substantial losses in cell viability over 120 min of incubation, PH did not promote extensive enzyme leakage from injured cells. In line with this effect, only after a lengthy period of infusion did PH considerably stimulate the release of enzymes into the effluent perfusate of livers. In conclusion, the increased glucose release caused by enhanced glycogenolysis, along with suppression of gluconeogenesis, is the opposite of what is predicted for antihyperglycemic agents. These effects were caused in part by disruption of mitochondrial bioenergetics, a result that should be considered when using PH for therapeutic purposes, particularly over long periods and in large doses.


Assuntos
Gluconeogênese , Floretina , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/metabolismo , Glucose/metabolismo , Fígado , Mitocôndrias Hepáticas/metabolismo , Floretina/farmacologia , Ratos , Ratos Wistar
10.
Exp Mol Pathol ; 91(3): 687-94, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21821020

RESUMO

The purpose of this work was to determine if mitochondrial dysfunction is involved in the development of non-alcoholic fatty liver disease (NAFLD). Using a model of obesity induced by the neonatal treatment of rats with monosodium L-glutamate (MSG), several parameters of liver mitochondrial function and their impact on liver redox status were evaluated. Specifically, fatty acid ß-oxidation, oxidative phosphorylation and Ca(2+)-induced mitochondrial permeability transition were assessed in isolated liver mitochondria, and reduced glutathione (GSH), linked thiol contents and the activities of several enzymes involved in the control of redox status were measured in the liver homogenate. Our results demonstrate that liver mitochondria from MSG-obese rats exhibit a higher ß-oxidation capacity and an increased capacity for oxidising succinate, without loss in the efficiency of oxidative phosphorylation. Also, liver mitochondria from obese rats were less susceptible to the permeability transition pore (PTP) opening induced by 1.0 µM CaCl(2). Cellular levels of GSH were unaffected in the livers from the MSG-obese rats, whereas reduced linked thiol contents were increased. The activities of glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione peroxidase were increased, while catalase activity was unaffected and superoxide dismutase activity was reduced in the livers from the MSG-obese rats. In this model of obesity, liver fat accumulation is not a consequence of mitochondrial dysfunction. The enhanced glucose-6-phosphate dehydrogenase activity observed in the livers of MSG-obese rats could be associated with liver fat accumulation and likely plays a central role in the mitochondrial defence against oxidative stress.


Assuntos
Fígado Gorduroso/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Animais Recém-Nascidos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/complicações , Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica , Obesidade/induzido quimicamente , Obesidade/complicações , Obesidade/metabolismo , Oxirredução , Fosforilação Oxidativa , Ratos , Ratos Wistar , Glutamato de Sódio/toxicidade
11.
J Biochem Mol Toxicol ; 25(2): 117-26, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20957679

RESUMO

Flavonols, which possess the B-catechol ring, as quercetin, are capable of producing o-hemiquinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α-ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP-synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH-oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The ß-hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 µM) increased the production of (14)CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity.


Assuntos
Metabolismo Energético , Flavonoides/farmacologia , Fígado/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Ácido 3-Hidroxibutírico/metabolismo , Acetoacetatos/metabolismo , Animais , Flavonóis , Ácidos Cetoglutáricos/metabolismo , Masculino , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Quercetina/farmacologia , Ratos , Ratos Wistar
12.
Environ Sci Pollut Res Int ; 28(47): 67711-67723, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34263402

RESUMO

Cadmium (Cd) inhibits soybean root growth, but its exact mode of action is still not completely understood. We evaluated the effects of Cd on growth, mitochondrial respiration, lipid peroxidation, total phenols, glutathione, and activities of lipoxygenase (LOX), superoxide dismutase (SOD), and catalase (CAT) in soybean roots. In primary roots, Cd stimulated KCN-insensitive respiration and KCN-SHAM-insensitive respiration, indicating the involvement of the alternative oxidase (AOX) pathway, while it decreased KCN-sensitive respiration, suggesting an inhibition of the cytochrome oxidase pathway (COX). In isolated mitochondria, Cd uncoupled the oxidative phosphorylation since it decreased state III respiration (coupled respiration) and ADP/O and respiratory control ratios, while it increased state IV respiration (depletion of exogenously added ADP). The uncoupling effect increased extramitochondrial LOX activity, lipid peroxidation, and oxidized and reduced glutathione, which induced an antioxidant response with enhanced SOD and CAT activities. In brief, our findings reveal that Cd acts as an uncoupler of the mitochondrial oxidative phosphorylation in soybean roots, disturbing cellular respiration and inducing oxidative cellular stress.


Assuntos
Cádmio , Fosforilação Oxidativa , Antioxidantes/metabolismo , Cádmio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Glycine max/metabolismo , Superóxido Dismutase/metabolismo
13.
Plant Physiol Biochem ; 166: 857-873, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34237604

RESUMO

Urochloa ruziziensis, a cover plant used in no-till systems, can suppress weeds in the field through their chemical compounds, but the mode of action of these compounds is still unknown. The present study aimed to investigate the effects of a saponin-rich butanolic extract from U. ruziziensis straw (BfUr) and one of its components, protodioscin on an eudicot Ipomoea grandifolia and a monocot Digitaria insularis weed. The anatomy and the morphology of the root systems and several parameters related to energy metabolism and antioxidant defense systems were examined. The IC50 values for the root growth inhibition by BfUr were 108 µg mL-1 in D. insularis and 230 µg mL-1 in I. grandifolia. The corresponding values for protodioscin were 34 µg mL-1 and 54 µg mL-1. I. grandifolia exhibited higher ROS-induced peroxidative damage in its roots compared with D. insularis. In the roots of both weeds, the BfUr and protodioscin induced a reduction in the meristematic and elongation zones with a precocious appearance of lateral roots, particularly in I. grandifolia. The roots also exhibited features of advanced cell differentiation in the vascular cylinder. These alterations were similar to stress-induced morphogenic responses (SIMRs), which are plant adaptive strategies to survive in the presence of toxicants. At concentrations above their IC50 values, the BfUr or protodioscin strongly inhibited the development of both weeds. Such findings demonstrated that U. ruziziensis mulches may contribute to the use of natural and renewable weed control tools.


Assuntos
Diosgenina , Saponinas , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Plantas Daninhas , Poaceae , Saponinas/farmacologia
14.
Toxicology ; 455: 152766, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33775737

RESUMO

Azure A (AA) is a cationic molecule of the class of phenothiazines that has been applied in vitro as a photosensitising agent in photodynamic antimicrobial chemotherapy. It is a di-demethylated analogue of methylene blue (MB), which has been demonstrated to be intrinsically and photodynamically highly active on mitochondrial bioenergetics. However, as far as we know, there are no studies about the photodynamic effects of AA on mammalian mitochondria. Therefore, this investigation aimed to characterise the intrinsic and photodynamic acute effects of AA (0.540 µM) on isolated rat liver mitochondria, isolated hepatocytes, and isolated perfused rat liver. The effects of AA were assessed by evaluating several parameters of mitochondrial bioenergetics, oxidative stress, cell viability, and hepatic energy metabolism. The photodynamic effects of AA were assessed under simulated hypoxic conditions, a suitable way for mimicking the microenvironment of hypoxic solid tumour cells. AA interacted with the mitochondria and, upon photostimulation (10 min of light exposure), produced toxic amounts of reactive oxygen species (ROS), which damaged the organelle, as demonstrated by the high levels of lipid peroxidation and protein carbonylation. The photostimulated AA also depleted the GSH pool, which could compromise the mitochondrial antioxidant defence. Bioenergetically, AA photoinactivated the complexes I, II, and IV of the mitochondrial respiratory chain and the F1FO-ATP synthase complex, sharply inhibiting the oxidative phosphorylation. Upon photostimulation (10 min of light exposure), AA reduced the efficiency of mitochondrial energy transduction and oxidatively damaged lipids in isolated hepatocytes but did not decrease the viability of cells. Despite the useful photobiological properties, AA presented noticeable dark toxicity on mitochondrial bioenergetics, functioning predominantly as an uncoupler of oxidative phosphorylation. This harmful effect of AA was evidenced in isolated hepatocytes, in which AA diminished the cellular ATP content. In this case, the cells exhibited signs of cell viability reduction in the presence of high AA concentrations, but only after a long time of incubation (at least 90 min). The impairments on mitochondrial bioenergetics were also clearly manifested in intact perfused rat liver, in which AA diminished the cellular ATP content and stimulated the oxygen uptake. Consequently, gluconeogenesis and ureogenesis were strongly inhibited, whereas glycogenolysis and glycolysis were stimulated. AA also promoted the release of cytosolic and mitochondrial enzymes into the perfusate concomitantly with inhibition of oxygen consumption. In general, the intrinsic and photodynamic effects of AA were similar to those of MB, but AA caused some distinct effects such as the photoinactivation of the complex IV of the mitochondrial respiratory chain and a diminution of the ATP levels in the liver. It is evident that AA has the potential to be used in mitochondria-targeted photodynamic therapy, even under low oxygen concentrations. However, the fact that AA directly disrupts mitochondrial bioenergetics and affects several hepatic pathways that are linked to ATP metabolism, along with its ability to perturb cellular membranes and its little potential to reduce cell viability, could result in significant adverse effects especially in long-term treatments.


Assuntos
Corantes Azur/toxicidade , Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Consumo de Oxigênio/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
15.
Photodiagnosis Photodyn Ther ; 35: 102446, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34289416

RESUMO

BACKGROUND: The present study aimed to characterize the intrinsic and photodynamic effects of azure B (AB) on mitochondrial bioenergetics, as well as the consequences of its intrinsic effects on hepatic energy metabolism. METHODS: Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. RESULTS: AB interacted with mitochondria regardless of photostimulation, but its binding degree was reduced by mitochondrial energization. Under photostimulation, AB caused lipid peroxidation and protein carbonylation and decreased the content of reduced glutathione (GSH) in mitochondria. AB impaired mitochondrial bioenergetics in at least three distinct ways: (1) uncoupling of oxidative phosphorylation; (2) photoinactivation of complexes I and II; and (3) photoinactivation of the FoF1-ATP synthase complex. Without photostimulation, AB also demonstrated mitochondrial toxicity, which was characterized by the induction of lipid peroxidation, loss of inner mitochondrial membrane integrity, and uncoupling of oxidative phosphorylation. The perfused rat liver experiments showed that mitochondria were one of the major targets of AB, even in intact cells. AB inhibited gluconeogenesis and ureagenesis, two biosynthetic pathways strictly dependent on intramitochondrially generated ATP. Contrariwise, AB stimulated glycogenolysis and glycolysis, which are required compensatory pathways for the inhibited oxidative phosphorylation. Similarly, AB reduced the cellular ATP content and the ATP/ADP and ATP/AMP ratios. CONCLUSIONS: Although the properties and severe photodynamic effects of AB on rat liver mitochondria might suggest its usefulness in PDT treatment of liver tumors, this possibility should be considered with precaution given the toxic intrinsic effects of AB on mitochondrial bioenergetics and energy-linked hepatic metabolism.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Trifosfato de Adenosina/metabolismo , Animais , Corantes Azur , Metabolismo Energético , Fígado , Mitocôndrias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Ratos , Ratos Wistar
16.
Mol Cell Biochem ; 340(1-2): 283-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20217188

RESUMO

Although metformin has been used to treat type 2 diabetes for several decades, the mechanism of its action on glucose metabolism remains controversial. To further assess the effect of metformin on glucose metabolism this work was undertaken to investigate the acute actions of metformin on glycogenolysis, glycolysis, gluconeogenesis, and ureogenesis in perfused rat livers. Metformin (5 mM) inhibited oxygen consumption and increased glycolysis and glycogenolysis in livers from fed rats. In perfused livers of fasted rats, the drug (concentrations higher than 1.0 mM) inhibited oxygen consumption and glucose production from lactate and pyruvate. Gluconeogenesis and ureogenesis from alanine were also inhibited. The cellular levels of ATP were decreased by metformin whereas the AMP levels of livers from fasted rats were increased. Taken together our results indicate that the energy status of the cell is probably compromised by metformin. The antihyperglycemic effect of metformin seems to be the result of a reduced oxidative phosphorylation without direct inhibition of key enzymatic activities of the gluconeogenic pathway. The AMP-activated protein kinase cascade could also be a probable target for metformin, which switches on catabolic pathways such as glycogenolysis and glycolysis, while switches off ATP consuming processes.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Metformina/farmacologia , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Relação Dose-Resposta a Droga , Jejum , Gluconeogênese/efeitos dos fármacos , Glicogenólise/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Técnicas In Vitro , Fígado/metabolismo , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Perfusão , Período Pós-Prandial , Ratos , Ratos Wistar , Fatores de Tempo , Ureia/metabolismo
17.
Cell Biochem Funct ; 28(2): 149-58, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20084677

RESUMO

Fisetin is a flavonoid dietary ingredient found in the smoke tree (Cotinus coggyria) and in several fruits and vegetables. The effects of fisetin on glucose metabolism in the isolated perfused rat liver and some glucose-regulating enzymatic activities were investigated. Fisetin inhibited glucose, lactate, and pyruvate release from endogenous glycogen. Maximal inhibitions of glycogenolysis (49%) and glycolysis (59%) were obtained with the concentration of 200 microM. The glycogenolytic effects of glucagon and dinitrophenol were suppressed by fisetin 300 microM. No significant changes in the cellular contents of AMP, ADP, and ATP were found. Fisetin increased the cellular content of glucose 6-phosphate and inhibited the glucose 6-phosphatase activity. Gluconeogenesis from lactate and pyruvate or fructose was inhibited by fisetin 300 microM. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC(50) = 163.10 +/- 12.28 microM); no such effect was observed in freeze-thawing disrupted mitochondria. It was concluded that fisetin inhibits glucose release from the livers in both fed and fasted conditions. The inhibition of pyruvate transport into the mitochondria and the reduction of the cytosolic NADH-NAD(+) potential redox could be the causes of the gluconeogenesis inhibition. Fisetin could also prevent hyperglycemia by decreasing glycogen breakdown or blocking the glycogenolytic action of hormones.


Assuntos
Flavonoides/farmacologia , Glucose/metabolismo , Fígado/metabolismo , Anacardiaceae/química , Animais , Flavonóis , Frutose/metabolismo , Glucagon/metabolismo , Gluconeogênese/efeitos dos fármacos , Glucose-6-Fosfatase/antagonistas & inibidores , Glucose-6-Fosfatase/metabolismo , Glicólise/efeitos dos fármacos , Lactatos/metabolismo , Masculino , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Piruvatos/metabolismo , Ratos , Ratos Wistar
18.
J Agric Food Chem ; 68(10): 3006-3016, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31986035

RESUMO

An increase in crop competitiveness relative to weed interference has the potential to reduce crop yield losses. In this study, the effects of phytoalexin resveratrol were examined in Zea mays L. (corn) and in the weed species Ipomoea grandifolia (Dammer) O'Donell (morning glory). At a concentration range from 220 to 2200 µM resveratrol exerted a stimulus on Z. mays seedling growth that was more pronounced at low concentrations; in the weed species I. grandifolia, resveratrol exerted inhibitory action on seedling growth in all of the assayed concentration range. In I. grandifolia, resveratrol also inhibited the respiratory activity of the primary roots. In mitochondria isolated from Z. mays roots, resveratrol at concentrations above 440 µM inhibited the respiration coupled to ADP phosphorylation and the activities of NADH-oxidase, succinate-oxidase, and ATPsynthase. These effects were not reproduced in Z. mays grown in the presence of resveratrol as the respiratory activities of the roots were not affected. The finding that the resveratrol exerts beneficial effects on growth of Z. mays seedlings and inhibits the growth of I. grandifolia heightens the potential of resveratrol application for crop protection.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Ipomoea/efeitos dos fármacos , Resveratrol/farmacologia , Zea mays/efeitos dos fármacos , Ipomoea/crescimento & desenvolvimento , Ipomoea/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/metabolismo , Resveratrol/análise , Sesquiterpenos/análise , Sesquiterpenos/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Fitoalexinas
19.
Free Radic Biol Med ; 153: 34-53, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315767

RESUMO

According to the literature, methylene blue (MB) is a photosensitizer (PS) with a high affinity for mitochondria. Therefore, several studies have explored this feature to evaluate its photodynamic effects on the mitochondrial apoptotic pathway under normoxic conditions. We are aware only of limited reports regarding MB's photodynamic effects on mitochondrial energy metabolism, especially under hypoxic conditions. Thus, the purposes of this study were to determine the direct and photodynamic acute effects of MB on the energy metabolism of rat liver mitochondria under hypoxic conditions and its direct acute effects on several parameters linked to energy metabolism in the isolated perfused rat liver. MB presented a high affinity for mitochondria, irrespective of photostimulation or proton gradient formation. Upon photostimulation, MB demonstrated high in vitro oxidizing species generation ability. Consequently, MB damaged the mitochondrial macromolecules, as could be evidenced by the elevated levels of lipid peroxidation and protein carbonyls. In addition to generating a pro-oxidant environment, MB also led to a deficient antioxidant defence system, as indicated by the reduced glutathione (GSH) depletion. Bioenergetically, MB caused uncoupling of oxidative phosphorylation and led to photodynamic inactivation of complex I, complex II, and F1FO-ATP synthase complex, thus decreasing mitochondrial ATP generation. Contrary to what is expected for an ideal PS, MB displayed appreciable dark toxicity on mitochondrial energy metabolism. The results indicated that MB acted via at least three mechanisms: direct damage to the inner mitochondrial membrane; uncoupling of oxidative phosphorylation; and inhibition of electron transfer. Confirming the impairment of mitochondrial energy metabolism, MB also strongly inhibited mitochondrial ATP production. In the perfused rat liver, MB stimulated oxygen consumption, decreased the ATP/ADP ratio, inhibited gluconeogenesis and ureogenesis, and stimulated glycogenolysis, glycolysis, and ammoniagenesis, fully corroborating its uncoupling action in intact cells, as well. It can be concluded that even under hypoxic conditions, MB is a PS with potential for photodynamic effect-induced mitochondrial dysfunction. However, MB disrupts the mitochondrial energy metabolism even in the dark, causing energy-linked liver metabolic changes that could be harmful in specific circumstances.


Assuntos
Azul de Metileno , Fármacos Fotossensibilizantes , Animais , Metabolismo Energético , Azul de Metileno/toxicidade , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Ratos
20.
Toxicol Lett ; 291: 158-172, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29626522

RESUMO

Citrus flavanones are often linked to their antihyperglycemic properties. This effect may be in part due to the inhibition of hepatic gluconeogenesis through different mechanisms. One of the possible mechanisms appears to be impairment of oxidative phosphorylation, which may also interfere with glycogen metabolism. Based on these facts, the purpose of the present study was to investigate the effects of three citrus flavanones on glycogenolysis in the isolated perfused rat liver. Hesperidin, hesperetin, and naringenin stimulated glycogenolysis and glycolysis from glycogen with concomitant changes in oxygen uptake. At higher concentrations (300 µM), hesperetin and naringenin clearly altered fructose and glucose metabolism, whereas hesperidin exerted little to no effects. In subcellular fractions hesperetin and naringenin inhibited the activity of glucose 6-phosphatase and glucokinase and the mitochondrial respiration linked to ADP phosphorylation. Hesperetin and naringenin also inhibited the transport of glucose into the cell. At a concentration of 300 µM, the glucose influx rate inhibition was 83% and 43% for hesperetin and naringenin, respectively. Hesperidin was the less active among the assayed citrus flavanones, indicating that the rutinoside moiety noticeably decrease the activity of these compounds. The effects on glycogenolysis and fructolysis were mainly consequence of an impairment on mitochondrial energy metabolism. The increased glucose release, due to the higher glycogenolysis, together with glucose transport inhibition is the opposite of what is expected for antihyperglycemic agents.


Assuntos
Citrus/química , Flavonas/farmacologia , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Monossacarídeos/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Flavanonas/farmacologia , Frutose/metabolismo , Glucose/metabolismo , Glicogenólise/efeitos dos fármacos , Hesperidina/farmacologia , Técnicas In Vitro , Fígado/efeitos dos fármacos , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Perfusão , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA