Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9235-9242, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751559

RESUMO

The coupling of the electron system to lattice vibrations and their time-dependent control and detection provide unique insight into the nonequilibrium physics of semiconductors. Here, we investigate the ultrafast transient response of semiconducting monolayer 2H-MoTe2 encapsulated with hBN using broadband optical pump-probe microscopy. The sub-40 fs pump pulse triggers extremely intense and long-lived coherent oscillations in the spectral region of the A' and B' exciton resonances, up to ∼20% of the maximum transient signal, due to the displacive excitation of the out-of-plane A1g phonon. Ab initio calculations reveal a dramatic rearrangement of the optical absorption of monolayer MoTe2 induced by an out-of-plane stretching and compression of the crystal lattice, consistent with an A1g -type oscillation. Our results highlight the extreme sensitivity of the optical properties of monolayer TMDs to small structural modifications and their manipulation with light.

2.
Opt Express ; 31(1): 107-115, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606945

RESUMO

Transient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe, i.e., ΔT/T or ΔR/R. Transient optical spectra are often interpreted as the manifestation of the intrinsic optical response of the monolayer, including effects such as the reduction of the exciton oscillator strength, electron-phonon coupling or many-body interactions like bandgap renormalization, trion or biexciton formation. Here we scrutinize the assumption that one can determine the non-equilibrium optical response of the TMD without accounting for the substrate used in the experiment. We systematically investigate the effect of the substrate on the broadband transient optical response of monolayer MoS2 (1L-MoS2) by measuring ΔT/T and ΔR/R with different excitation photon energies. Employing the boundary conditions given by the Fresnel equations, we analyze the transient transmission/reflection spectra across the main excitonic resonances of 1L-MoS2. We show that pure interference effects induced by the different substrates explain the substantial differences (i.e., intensity, peak energy and exciton linewidth) observed in the transient spectra of the same monolayer. We thus demonstrate that the substrate strongly affects the magnitude of the exciton energy shift and the change of the oscillator strength in the transient optical spectra. By highlighting the key role played by the substrate, our results set the stage for a unified interpretation of the transient response of optoelectronic devices based on a broad class of TMDs.

3.
Nano Lett ; 22(13): 5322-5329, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35759746

RESUMO

In single-layer (1L) transition metal dichalcogenides, the reduced Coulomb screening results in strongly bound excitons which dominate the linear and the nonlinear optical response. Despite the large number of studies, a clear understanding on how many-body and Coulomb correlation effects affect the excitonic resonances on a femtosecond time scale is still lacking. Here, we use ultrashort laser pulses to measure the transient optical response of 1L-WS2. In order to disentangle many-body effects, we perform exciton line-shape analysis, and we study its temporal dynamics as a function of the excitation photon energy and fluence. We find that resonant photoexcitation produces a blue shift of the A exciton, while for above-resonance photoexcitation the transient response at the optical bandgap is largely determined by a reduction of the exciton oscillator strength. Microscopic calculations based on excitonic Heisenberg equations of motion quantitatively reproduce the nonlinear absorption of the material and its dependence on excitation conditions.

4.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674602

RESUMO

Atherosclerosis is a multifactorial inflammatory pathology that involves metabolic processes. Improvements in therapy have drastically reduced the prognosis of cardiovascular disease. Nevertheless, a significant residual risk is still relevant, and is related to unmet therapeutic targets. Endothelial dysfunction and lipid infiltration are the primary causes of atherosclerotic plaque progression. In this contest, mitochondrial dysfunction can affect arterial wall cells, in particular macrophages, smooth muscle cells, lymphocytes, and endothelial cells, causing an increase in reactive oxygen species (ROS), leading to oxidative stress, chronic inflammation, and intracellular lipid deposition. The detection and characterization of mitochondrial DNA (mtDNA) is crucial for assessing mitochondrial defects and should be considered the goal for new future therapeutic interventions. In this review, we will focus on a new idea, based on the analysis of data from many research groups, namely the link between mitochondrial impairment and endothelial dysfunction and, in particular, its effect on atherosclerosis and aging. Therefore, we discuss known and novel mitochondria-targeting therapies in the contest of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Células Endoteliais/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Lipídeos
5.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108819

RESUMO

It is currently believed that plaque complication, with the consequent superimposed thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets are major players in this process. Despite the considerable progress made by the new antithrombotic strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in terms of a reduction in major cardiovascular events, a significant number of patients with previous ACSs treated with these drugs continue to experience events, indicating that the mechanisms of platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology has improved. It has been reported that, in response to physiological and pathological stimuli, platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for protein synthesis following their activation. A better understanding of the pathophysiology of platelet activation and the interaction with the main cellular components of the vascular wall will open up new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and peripheral artery diseases before and after the acute event. In the present review, we will discuss the novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications in activation and aggregation.


Assuntos
Síndrome Coronariana Aguda , Trombose , Humanos , Plaquetas/metabolismo , Anticoagulantes/farmacologia , Ativação Plaquetária/genética , Hemostasia , Trombose/metabolismo , RNA não Traduzido/metabolismo , Síndrome Coronariana Aguda/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária
6.
J Thromb Thrombolysis ; 53(3): 739-749, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34671897

RESUMO

Several studies have shown that T-cells might be involved in pathophysiology of acute coronary syndromes (ACS). Tissue factor (TF) plays a key role in ACS. Many evidences have indicated that some statins reduce TF expression in several cell types. However, literature about rosuvastatin and TF and about statins effects on T-cells is still scanty. Colchicine is an anti-inflammatory drug recently proven to have beneficial effects in ACS via unknown mechanisms. This study investigates the effects of colchicine and rosuvastatin on TF expression in oxLDL-activated T-cells. T-cells, isolated from buffy coats of healthy volunteers, were stimulated with oxLDL (50 µg/dL). T-cells were pre-incubated with colchicine (10 µM) or rosuvastatin (5 µM) for 1 h and then stimulated with oxLDL (50 µg/mL). TF gene (RT-PCR), protein (western blot), surface expression (FACS) and procoagulant activity (FXa generation assay) were measured. NF-κB/IκB axis was examined by western blot analysis and translocation assay. Colchicine and rosuvastatin significantly reduced TF gene, and protein expression and procoagulant activity in oxLDL stimulated T-cells. This effect was associated with a significant reduction in TF surface expression as well as its procoagulant activity. These phenomena appear modulated by drug effects on the transcription factor NF-kB. Rosuvastatin and colchicine prevent TF expression in oxLDL-stimulated T-cells by modulating the NF-κB/IκB axis. Thus, we speculate that this might be another mechanism by which these drugs exert benefic cardiovascular effects.


Assuntos
Síndrome Coronariana Aguda , Inibidores de Hidroximetilglutaril-CoA Redutases , Síndrome Coronariana Aguda/tratamento farmacológico , Colchicina/farmacologia , Humanos , Lipoproteínas LDL , NF-kappa B/metabolismo , Rosuvastatina Cálcica/farmacologia , Linfócitos T/metabolismo , Tromboplastina/genética
7.
Nano Lett ; 21(11): 4738-4743, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34037406

RESUMO

Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS2/MoS2 have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy. Here, we perform two-dimensional electronic spectroscopy (2DES), a method with both high frequency and temporal resolution, on a large-area WS2/MoS2 HS where we unambiguously time resolve both interlayer hole and electron transfer with 34 ± 14 and 69 ± 9 fs time constants, respectively. We simultaneously resolve additional optoelectronic processes including band gap renormalization and intralayer exciton coupling. This study demonstrates the advantages of 2DES in comprehensively resolving ultrafast processes in TMD-HS, including ICT.

8.
Nano Lett ; 21(5): 2165-2173, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33591207

RESUMO

Monolayer transition metal dichalcogenides bear great potential for photodetection and light harvesting due to high absorption coefficients. However, these applications require dissociation of strongly bound photogenerated excitons. The dissociation can be achieved by vertically stacking different monolayers to realize band alignment that favors interlayer charge transfer. In such heterostructures, the reported recombination times vary strongly, and the charge separation and recombination mechanisms remain elusive. We use two color pump-probe microscopy to demonstrate that the charge separation in a MoSe2/WSe2 heterostructure is ultrafast (∼200 fs) and virtually temperature independent, whereas the recombination accelerates strongly with temperature. Ab initio quantum dynamics simulations rationalize the experiments, indicating that the charge separation is temperature-independent because it is barrierless, involves dense acceptor states, and is promoted by higher-frequency out-of-plane vibrations. The strong temperature dependence of the recombination, on the other hand, arises from a transient indirect-to-direct bandgap modulation by low-frequency shear and layer breathing motions.

9.
J Thromb Thrombolysis ; 50(2): 468-472, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32335777

RESUMO

Platelets aggregation leading to thrombosis plays a pivotal role in the pathophysiology of acute coronary syndrome (ACS) and of stent thrombosis. Antiplatelet therapy with aspirin plus an ADP-receptor inhibitor (ticagrerol, prasugrel or clopidogrel) is recommended to reduce the risk of other platelet-mediated events. Clopidogrel is recommended in patients with Chronic Coronary Syndromes (CCS) or in ACS patients at high bleeding risk. Unfortunately, up to 30% of patients are non-responders to clopidogrel and show residual high platelet reactivity (HPR). Colchicine (COLC) is a drug with cardiovascular effects. We have demonstrated that COLC might exert protective cardiovascular effects by interfering with cytoskeleton rearrangement, a phenomenon involved in platelet aggregation. Here, we investigate in vitro the effects of colchicine on platelet aggregation of patients on DAPT with clopidogrel. Platelets obtained from 35 CCS patients on therapy with clopidogrel were pre-incubated with COLC 10 µM before being stimulated with ADP (20 µM), or TRAP (25 µM) at 0, 30, 60 and 90 min to measure max aggregation by LTA. Platelets not COLC-preincubated served as controls. Seven patients were pre-selected as clopidogrel non-responders. COLC significantly reduced TRAP-induced platelet aggregation in clopidogrel responders and non-responders. Interestingly, COLC inhibited ADP-induced platelet aggregation in clopidogrel non-responders in which ADP still caused activation despite DAPT. We demonstrate that COLC inhibits platelet aggregation in clopidogrel non-responders with HPR despite DAPT with this ADP receptor-inhibitor. Further in vivo studies should be designed to evaluate the opportunity to prescribe colchicine after ACS/CCS to overcome the clopidogrel limitations in the DAPT therapy.


Assuntos
Aspirina/uso terapêutico , Clopidogrel/uso terapêutico , Colchicina/farmacologia , Isquemia Miocárdica/terapia , Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Resistência a Medicamentos , Terapia Antiplaquetária Dupla , Humanos , Isquemia Miocárdica/sangue , Isquemia Miocárdica/diagnóstico , Intervenção Coronária Percutânea/efeitos adversos , Testes de Função Plaquetária , Resultado do Tratamento
10.
Nano Lett ; 18(11): 6882-6891, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30264571

RESUMO

In monolayer (1L) transition metal dichalcogenides (TMDs) the valence and conduction bands are spin-split because of the strong spin-orbit interaction. In tungsten-based TMDs the spin-ordering of the conduction band is such that the so-called dark excitons, consisting of electrons and holes with opposite spin orientation, have lower energy than A excitons. The transition from bright to dark excitons involves the scattering of electrons from the upper to the lower conduction band at the K point of the Brillouin zone, with detrimental effects for the optoelectronic response of 1L-TMDs, since this reduces their light emission efficiency. Here, we exploit the valley selective optical selection rules and use two-color helicity-resolved pump-probe spectroscopy to directly measure the intravalley spin-flip relaxation dynamics in 1L-WS2. This occurs on a sub-ps time scale, and it is significantly dependent on temperature, indicative of phonon-assisted relaxation. Time-dependent ab initio calculations show that intravalley spin-flip scattering occurs on significantly longer time scales only at the K point, while the occupation of states away from the minimum of the conduction band significantly reduces the scattering time. Our results shed light on the scattering processes determining the light emission efficiency in optoelectronic and photonic devices based on 1L-TMDs.

11.
J Thromb Thrombolysis ; 42(2): 225-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27007282

RESUMO

Pregnancy-associated plasma protein-A (PAPP-A) is a metalloproteinase with a controversial role in pathophysiology of cardiovascular disease. It seems involved in progression of atherosclerosis and is widely represented in atherosclerotic plaque. PAPP-A plasma levels are elevated in patients with acute coronary syndromes (ACS), thus it has been suggested that it might be a prognostic marker for developing major cardiovascular events. However, the pathophysiological link(s) between PAPP-A and ACS are still unknown. Several studies have indicated that tissue factor (TF) plays a pivotal role in the pathophysiology of ACS by triggering the formation of intracoronary thrombi following endothelial injury. This study investigates whether PAPP-A, at concentrations measurable in ACS patients, might induce TF expression in human endothelial cells in culture (HUVEC). In HUVEC, PAPP-A induced TF-mRNA transcription as demonstrated by real time PCR and expression of functionally active TF as demonstrated by FACS analysis and pro-coagulant activity assay. PAPP-A induced TF expression through the activation of Akt/NF-κB axis, as demonstrated by luciferase assay and by suppression of TF-mRNA transcription as well as of TF expression/activity by Akt and NF-κB inhibitors. These data indicate that PAPP-A promotes TF expression in human endothelial cells and support the hypothesis that this proteinase, besides being involved in progression of atherosclerosis, does not represent an independent risk factor for adverse cardiovascular events, but it rather might play an "active" role in the pathophysiology of ACS as an effector molecule able to induce a pro-thrombotic phenotype in endothelial cells.


Assuntos
Coagulação Sanguínea , Proteína Plasmática A Associada à Gravidez/fisiologia , Tromboplastina/fisiologia , Síndrome Coronariana Aguda , Células Endoteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , NF-kappa B/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Small ; 11(4): 462-71, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25207751

RESUMO

Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.

13.
J Thromb Thrombolysis ; 40(2): 186-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25712553

RESUMO

Tissue factor pathway inhibitor (TFPI) is a serine-protease inhibitor, which modulates coagulation tissue factor-dependent (TF). It binds directly and inhibits the TF-FVII/FVIIa complex as well as FXa. Time to reperfusion of acute ischemic myocardium is essential for tissue salvage. However, reperfusion also results in a unique form of myocardial damage, such as contractile dysfunction, decreased coronary flow and altered vascular reactivity. Oxidants and reactive oxygen species (ROS) formation is increased in the post-ischemic heart and is responsible of post-ischemic injury. It has been reported that ROS promote a procoagulant state via TF expression while no data are available on the effect on TFPI. Endothelial cells were incubated with two different ROS generating systems, xanthine (X)/xanthine oxidase (XO) for 5 min, or H2O2 (500 µM) for 24 h. TFPI activity was measured in supernatants by chromogenic assay and TFPI-mRNA analyzed by RT-PCR 2 h after ROS exposure. Unstimulated cells and cells exposed to either X or XO served as controls. Western blot and ligand dot blot was performed to evaluate ROS effect on TFPI structure and binding to FXa. ROS generated by X/XO as well as H2O2 system resulted in decreased TFPI activity compared to unstimulated cells while X or XO alone had no effect. No differences in TFPI mRNA levels versus controls was observed. A significant degradation of TFPI was induced by ROS exposure, resulting in a decreased ability to bind FXa. ROS induce a procoagulant state in endothelial cells by altering TFPI structure, resulting in inhibition of TFPI binding to Factor Xa and loss of activity. This phenomenon might have important consequences during reperfusion of post-ischemic myocardium.


Assuntos
Coagulação Sanguínea , Células Endoteliais/metabolismo , Fator Xa/metabolismo , Regulação da Expressão Gênica , Lipoproteínas/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Células Endoteliais/patologia , Humanos , Estrutura Terciária de Proteína , Tromboplastina/metabolismo
14.
J Thromb Thrombolysis ; 40(4): 444-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26104185

RESUMO

Intake of large amounts of added sweeteners has been associated with the pathogenesis of cardiometabolic risk. Several studies have shown that fructose increases the cardiovascular risk by modulating endothelial dysfunction and promoting atherosclerosis. Recently, a potential role for fructose in cardiovascular thrombosis has been suggested but with controversial results. Tissue factor (TF) plays a pivotal role in the pathophysiology of cardiovascular thrombosis by triggering the formation of intracoronary thrombi following endothelial injury. This study investigates the effects of fructose, in a concentration range usually observed in the plasma of patients with increased cardiovascular risk, on TF in human umbilical endothelial cells (HUVECs). Cells were stimulated with increasing concentrations of fructose (0.25, 1 and 2.5 mM) and then processed to evaluate TF-mRNA levels by real-time PCR as well as TF expression/activity by FACS analysis and procoagulant activity. Finally, a potential molecular pathway involved in modulating this phenomenon was investigated. We demonstrate that fructose induces transcription of mRNA for TF. In addition, we show that this monosaccharide promotes surface expression of TF that is functionally active. Fructose effects on TF appear modulated by the oxygen free radicals through activation of the transcription factor NF-κB since superoxide dismutase and NF-κB inhibitors suppressed TF expression. Data of the present study, although in vitro, indicate that fructose, besides promoting atherosclerosis, induces a prothrombotic phenotype in HUVECs, thus indicating one the mechanism(s) by which this sweetener might increase cardiometabolic risk.


Assuntos
Frutose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Edulcorantes/efeitos adversos , Tromboplastina/biossíntese , Trombose , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Aterosclerose/patologia , Frutose/farmacocinética , Frutose/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , NF-kappa B/metabolismo , Edulcorantes/farmacologia , Trombose/induzido quimicamente , Trombose/metabolismo , Trombose/patologia , Transcrição Gênica/efeitos dos fármacos
15.
Eur Child Adolesc Psychiatry ; 23(3): 173-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23812866

RESUMO

It has been proposed that the neurotrophin brain-derived neurotrophic factor (BDNF) may be involved in attention deficit-hyperactivity disorder (ADHD) etiopathogenesis. Alterations in BDNF serum levels have been observed in childhood/adulthood neurodevelopmental pathologies, but no evidence is available for BDNF serum concentrations in ADHD. The study includes 45 drug-naïve ADHD children and 45 age-sex matched healthy subjects. Concentration of serum BDNF was determined by the ELISA method. BDNF serum levels in patients with ADHD were not different from those of controls (mean ± SD; ADHD: 39.33 ± 10.41 ng/ml; controls: 38.82 ± 8.29 ng/ml, t = -0.26, p = 0.80). Our findings indicate no alteration of serum BDNF levels in untreated patients with ADHD. A further stratification for cognitive, neuropsychological and psychopathological assessment in a larger sample could be useful to clarify the role of BDNF in the endophenotype characterization of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/sangue , Fator Neurotrófico Derivado do Encéfalo/sangue , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Índice de Massa Corporal , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Fatores Socioeconômicos
16.
J Clin Med ; 13(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38337438

RESUMO

Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung condition, primarily characterized by the presence of a limited airflow, due to abnormalities of the airways and/or alveoli, that often coexists with other chronic diseases such as lung cancer, cardiovascular diseases, and metabolic disorders. Comorbidities are known to pose a challenge in the assessment and effective management of COPD and are also acknowledged to have an important health and economic burden. Local and systemic inflammation have been proposed as having a potential role in explaining the association between COPD and these comorbidities. Considering that the number of patients with COPD is expected to rise, understanding the mechanisms linking COPD with its comorbidities may help to identify new targets for therapeutic purposes based on multi-dimensional assessments.

17.
Life (Basel) ; 14(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398739

RESUMO

Interstitial lung diseases comprise a heterogenous range of diffuse lung disorders, potentially resulting in pulmonary fibrosis. While idiopathic pulmonary fibrosis has been recognized as the paradigm of a progressive fibrosing interstitial lung disease, other conditions with a progressive fibrosing phenotype characterized by a significant deterioration of the lung function may lead to a burden of significant symptoms, a reduced quality of life, and increased mortality, despite treatment. There is now evidence indicating that some common underlying biological mechanisms can be shared among different chronic fibrosing disorders; therefore, different biomarkers for disease-activity monitoring and prognostic assessment are under evaluation. Thus, understanding the common pathways that induce the progression of pulmonary fibrosis, comprehending the diversity of these diseases, and identifying new molecular markers and potential therapeutic targets remain highly crucial assignments. The purpose of this review is to examine the main pathological mechanisms regulating the progression of fibrosis in interstitial lung diseases and to provide an overview of potential biomarker and therapeutic options for patients with progressive pulmonary fibrosis.

18.
Surgeon ; 11 Suppl 1: S10-3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23165103

RESUMO

BACKGROUND: In 1988, Longo proposed a new treatment for haemorrhoidal disease. In western countries day surgery procedures are becoming more and more common. We propose a new protocol for outpatient haemorrhoidopexy. PATIENTS AND METHODS: From 2003 to 2010, we performed 403 out-patient stapled haemorrhoidopexies under spinal anaesthesia, on patients with symptomatic grade III and IV haemorrhoid disease. We used PPH 01 and PPH 03 staplers (Ethicon Endosurgery, Cincinnati, OH, USA). We assessed early and late postoperative pain with a Visual Analogue Scale (VAS), and clinical postoperative examinations were performed 7 days, 6 months, and 1, 3 and 5 years after surgery. RESULTS: The mean surgery time was about 20 min (range 13-39 min). Out of 403 patients, 41 were not dischargeable as a result of urine retention, severe pain or mild bleeding. Twenty-two patients reported transient faecal urgency, while no patient complained of anal incontinence. CONCLUSIONS: Our experience with 403 patients demonstrated that stapled haemorrhoidopexy is feasible and safe as a day surgery procedure. However, careful preoperative planning is necessary in order to evaluate the patients' health status and the consequent perioperative and postoperative risk. Our results are positive in terms of surgical safety and postoperative recovery time.


Assuntos
Procedimentos Cirúrgicos Ambulatórios/métodos , Hemorroidectomia/métodos , Grampeamento Cirúrgico , Técnicas de Sutura/instrumentação , Desenho de Equipamento , Feminino , Seguimentos , Hemorroidas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
19.
Thromb Haemost ; 123(1): 64-75, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36126947

RESUMO

BACKGROUND: Several evidence show that elevated plasma levels of uric acid (UA) are associated with the increased risk of developing atherothrombotic cardiovascular events. Hyperuricemia is a risk factor for endothelial dysfunction (ED). ED is involved in the pathophysiology of atherothrombosis since dysfunctional cells lose their physiological, antithrombotic properties. We have investigated whether UA might promote ED by modulating the tissue factor (TF)/TF pathway inhibitor (TFPI) balance by finally changing the antithrombotic characteristics of endothelial cells. METHODS: Human umbilical vein endothelial cells were incubated with increasing doses of UA (up to 9 mg/dL). TF gene and protein expressions were evaluated by real-time polymerase chain reaction (PCR) and Western blot. Surface expression and procoagulant activity were assessed by FACS (fluorescence activated cell sorting) analysis and coagulation assay. The mRNA and protein levels of TFPI were measured by real-time PCR and Western blot. The roles of inflammasome and nuclear factor-κB (NF-κB) as possible mechanism(s) of action of the UA on TF/TFPI balance were also investigated. RESULTS: UA significantly increased TF gene and protein levels, surface expression, and procoagulant activity. In parallel, TFPI levels were significantly reduced. The NF-κB pathways appeared to be involved in modulating these phenomena. Additionally, inflammasome might also play a role. CONCLUSION: The present in vitro study shows that one of the mechanisms by which high levels of UA contribute to ED might be the imbalance between TF/TFPI levels in endothelial cells, shifting them to a nonphysiological, prothrombotic phenotype. These UA effects might hypothetically explain, at least in part, the relationship observed between elevated plasma levels of UA and cardiovascular events.


Assuntos
Doenças Cardiovasculares , Tromboplastina , Humanos , Tromboplastina/genética , Tromboplastina/metabolismo , Ácido Úrico/farmacologia , Ácido Úrico/metabolismo , NF-kappa B/metabolismo , Fibrinolíticos , Inflamassomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Doenças Cardiovasculares/metabolismo
20.
Nat Commun ; 14(1): 7273, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949848

RESUMO

Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA