Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137799

RESUMO

High-quality patterning determines the properties of patterned emerging two-dimensional (2D) conjugated polymers which is essential for potential applications in future electronic nanodevices. However, the suitable patterning method for 2D polymers is yet concluded because it's still challenging to gain comprehensive understanding of their damage mechanisms by visualizing the structural modification during patterning process. Here, the damage mechanisms during patterning of 2D polymers, induced by various patterning methods, are unveiled based on a systematic study of structural damage and edge morphology on an imine-based 2D polymer (polyimine). Patterning using focused electron beam, focused ion beam (FIB) and mechanical carving is evaluated. Focused electron beam successively introduces sputtering effect, knock-on displacement damage and massive radiolysis effect as increasing the electron dose from 9.46×107 e-/nm2 to 1.14×1010 e-/nm2. The successful pattering is enabled by knock-on damage while impeded by carbon contamination when beyond a critical sample thickness. FIB creates current-dependent edge morphologies and extensive damage from the ion implantation caused by the tail of unfocused beam. A precisely controlled tip can tear the polyimine film through grain boundaries and in hence create the patterning edge with suitable edge roughness for certain application senarios when the beam damage is avoided. Taking structural damage and the resulting quantitative edge roughness into consideration, this study provides a detailed instruction on the proper patterning techniques for 2D crystalline polymers and paves the way for tailored intrinsic properties and device fabrication using these novel materials. .

2.
Sci Rep ; 14(1): 7404, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548783

RESUMO

Optical fiber with YPO4:Pr3+ nanocrystals (NCs) is presented for the first time using the glass powder-NCs doping method. The method's advantage is separate preparation of NCs and glass to preserve luminescent and optical properties of NCs once they are incorporated into optical fiber. The YPO4:Pr3+ nanocrystals were synthesized by the co-precipitation and hydrothermal methods, optimized for size (< 100 nm), shape, Pr3+ ions concentration (0.2 mol%), and emission lifetime. The core glass was selected from the non-silica P2O5-containing system with refractive index (n = 1.788) close to the NCs (no = 1.657, ne = 1.838). Optical fiber was drawn by modified powder-in-tube method after pre-sintering of glass powder-YPO4:Pr3+ (wt 3%) mixture to form optical fiber preform. Luminescent properties of YPO4:Pr3+ and optical fiber showed their excellent agreement, including sharp Pr3+ emission at 600 nm (1D2-3H4) and 1D2 level lifetime (τ = 156 ± 5 µs) under 488 nm excitation. The distribution of the YPO4:Pr3+ NCs in optical fiber were analyzed by TEM-EDS in the core region (FIB-SEM-prepared). The successful usage of glass powder-NCs doping method was discussed in the aspect of promising properties of the first YPO4:Pr3+ doped optical fiber as a new way to develop active materials for lasing applications, among others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA