Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 136(5): 964-77, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19269371

RESUMO

Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinson's disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons. Moreover, we derived hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Factor-free hiPSCs maintain a pluripotent state and show a global gene expression profile, more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.


Assuntos
Doença de Parkinson/metabolismo , Células-Tronco Pluripotentes/patologia , Diferenciação Celular , Reprogramação Celular , Dopamina/metabolismo , Fibroblastos/metabolismo , Humanos , Neurônios/metabolismo
2.
Genetics ; 184(3): 629-36, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20026680

RESUMO

TAHRE, the least abundant of the three retrotransposons forming telomeres in Drosophila melanogaster, has high sequence similarity to the gag gene and untranslated regions of HeT-A, the most abundant telomere-specific retrotransposon. Despite TAHRE's apparent evolutionary relationship to HeT-A, we find TAHRE Gag cannot locate to telomere-associated "Het dots" unless collaborating with HeT-A Gag. TAHRE Gag is carried into nuclei by HeT-A or TART Gag, but both TART and TAHRE Gags need HeT-A Gag to localize to Het dots. When coexpressed with the appropriate fragment of HeT-A and/or TART Gags, TAHRE Gag multimerizes with either protein. HeT-A and TART Gags form homo- and heteromultimers using a region containing major homology region (MHR) and zinc knuckle (CCHC) motifs, separated by a pre_C2HC motif (motifs common to other retroelements). This region's sequence is strongly conserved among the three telomeric Gags, with precise spacing of conserved residues. Nontelomeric Gags neither interact with the telomeric Gags nor have this conserved spacing. TAHRE Gag is much less able to enter the nucleus by itself than HeT-A or TART Gags. The overall telomeric localization efficiency for each of the three telomeric Gag proteins correlates with the relative abundance of that element in telomere arrays, suggesting an explanation for the relative rarity of TAHRE elements in telomere arrays and supporting the hypothesis that Gag targeting to telomeres is important for the telomere-specific transposition of these elements.


Assuntos
Produtos do Gene gag/metabolismo , Proteínas de Insetos/metabolismo , Multimerização Proteica/fisiologia , Retroelementos/fisiologia , Telômero/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Drosophila , Produtos do Gene gag/genética , Proteínas de Insetos/genética , Estrutura Terciária de Proteína , Telômero/genética
3.
Cell Stem Cell ; 3(3): 346-353, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18786421

RESUMO

Current approaches to reprogram human somatic cells to pluripotent iPSCs utilize viral transduction of different combinations of transcription factors. These protocols are highly inefficient because only a small fraction of cells carry the appropriate number and stoichiometry of proviral insertions to initiate the reprogramming process. Here we have generated genetically homogeneous "secondary" somatic cells, which carry the reprogramming factors as defined doxycycline (DOX)-inducible transgenes. These cells were obtained by infecting fibroblasts with DOX-inducible lentiviruses, isolating "primary" iPSCs in the presence of the drug, and finally differentiating to "secondary" fibroblasts. When "secondary" fibroblast lines were cultured in the presence of DOX without further viral infection, up to 2% of the cells were reprogrammed to pluripotent "secondary" human iPSCs. This system will facilitate the characterization of the reprogramming process and provides a unique platform for genetic or chemical screens to enhance reprogramming or replace individual factors.


Assuntos
Desdiferenciação Celular , Reprogramação Celular , Técnicas Citológicas , Células-Tronco Pluripotentes/metabolismo , Doxiciclina/metabolismo , Fibroblastos/metabolismo , Técnicas Genéticas , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA