Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Kidney Dis ; 83(6): 829-833, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38211685

RESUMO

The etiologies of newborn deaths in neonatal intensive care units usually remain unknown, even after genetic testing. Whole-genome sequencing, combined with artificial intelligence-based methods for predicting the effects of non-coding variants, provide an avenue for resolving these deaths. Using one such method, SpliceAI, we identified a maternally inherited deep intronic PKHD1 splice variant (chr6:52030169T>C), in trans with a pathogenic missense variant (p.Thr36Met), in a newborn who died of autosomal recessive polycystic kidney disease at age 2 days. We validated the deep intronic variant's impact in maternal urine-derived cells expressing PKHD1. Reverse transcription polymerase chain reaction followed by Sanger sequencing showed that the variant causes inclusion of 147bp of the canonical intron between exons 29 and 30 of PKHD1 into the mRNA, including a premature stop codon. Allele-specific expression analysis at a heterozygous site in the mother showed that the mutant allele completely suppresses canonical splicing. In an unrelated healthy control, there was no evidence of transcripts including the novel splice junction. We returned a diagnostic report to the parents, who underwent in vitro embryo selection.


Assuntos
Íntrons , Rim Policístico Autossômico Recessivo , Receptores de Superfície Celular , Humanos , Recém-Nascido , Masculino , Íntrons/genética , Mutação de Sentido Incorreto , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/diagnóstico , Receptores de Superfície Celular/genética
2.
Cell Rep ; 39(3): 110695, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443168

RESUMO

Peripheral T cell lymphoma not otherwise specified (PTCL-NOS) comprises heterogeneous lymphoid malignancies characterized by pleomorphic lymphocytes and variable inflammatory cell-rich tumor microenvironment. Genetic drivers in PTCL-NOS include genomic alterations affecting the VAV1 oncogene; however, their specific role and mechanisms in PTCL-NOS remain incompletely understood. Here we show that expression of Vav1-Myo1f, a recurrent PTCL-associated VAV1 fusion, induces oncogenic transformation of CD4+ T cells. Notably, mouse Vav1-Myo1f lymphomas show T helper type 2 features analogous to high-risk GATA3+ human PTCL. Single-cell transcriptome analysis reveals that Vav1-Myo1f alters T cell differentiation and leads to accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment, a feature linked with aggressiveness in human PTCL. Importantly, therapeutic targeting of TAMs induces strong anti-lymphoma effects, highlighting the lymphoma cells' dependency on the microenvironment. These results demonstrate an oncogenic role for Vav1-Myo1f in the pathogenesis of PTCL, involving deregulation in T cell polarization, and identify the lymphoma-associated macrophage-tumor microenvironment as a therapeutic target in PTCL.


Assuntos
Linfoma de Células T Periférico , Animais , Fusão Gênica , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Macrófagos/metabolismo , Camundongos , Miosina Tipo I/genética , Oncogenes , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Microambiente Tumoral/genética
3.
J Invest Dermatol ; 141(12): 2908-2920.e7, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34089720

RESUMO

Sézary syndrome is an aggressive and disseminated form of cutaneous T-cell lymphoma associated with dismal prognosis in which the histone deacetylase inhibitor romidepsin has shown remarkable activity as a single agent. However, clinical responses to romidepsin are typically transient, highlighting the need for more effective therapies. In this study, we show synergistic antilymphoma effects of romidepsin in combination with mechlorethamine, an alkylating agent, in cutaneous T-cell lymphoma cell lines and primary samples with strong antitumor effects in an in vivo model of Sézary syndrome. Mechanistically, gene expression profiling points to abrogation of Jak/signal transducer and activator of transcription (STAT) signaling as an important mediator of this interaction. Consistently, the combination of mechlorethamine plus romidepsin resulted in downregulation of STAT5 phosphorylation in romidepsin-sensitive cell lines and primary Sézary syndrome samples, but not in romidepsin-resistant tumors. Moreover, in further support of Jak/STAT signaling as a modulator of romidepsin activity in cutaneous T-cell lymphoma, treatment with romidepsin in combination with Jak inhibitors resulted in markedly increased therapeutic responses. Overall, these results support a role for romidepsin plus mechlorethamine in combination in the treatment of cutaneous T-cell lymphoma and uncover a previously unrecognized role for Jak/STAT signaling in the response to romidepsin and romidepsin-based combination therapies in Sézary syndrome.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Depsipeptídeos/administração & dosagem , Inibidores de Janus Quinases/farmacologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Mecloretamina/administração & dosagem , Fatores de Transcrição STAT/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Camundongos , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais/efeitos dos fármacos
4.
Nat Cancer ; 2(1): 98-113, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33928261

RESUMO

Angioimmunoblastic T cell lymphoma (AITL) and peripheral T cell lymphoma not-otherwise-specified (PTCL, NOS) have poor prognosis and lack driver actionable targets for directed therapies in most cases. Here we identify FYN-TRAF3IP2 as a recurrent oncogenic gene fusion in AITL and PTCL, NOS tumors. Mechanistically, we show that FYN-TRAF3IP2 leads to aberrant NF-κB signaling downstream of T cell receptor activation. Consistent with a driver oncogenic role, FYN-TRAF3IP2 expression in hematopoietic progenitors induces NF-κB-driven T cell transformation in mice and cooperates with loss of the Tet2 tumor suppressor in PTCL development. Moreover, abrogation of NF-κB signaling in FYN-TRAF3IP2-induced tumors with IκB kinase inhibitors delivers strong anti-lymphoma effects in vitro and in vivo. These results demonstrate an oncogenic and pharmacologically targetable role for FYN-TRAF3IP2 in PTCLs and call for the clinical testing of anti-NF-κB targeted therapies in these diseases.


Assuntos
Linfadenopatia Imunoblástica , Linfoma de Células T Periférico , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfadenopatia Imunoblástica/genética , Linfoma de Células T Periférico/genética , Camundongos , NF-kappa B/genética , Oncogenes , Transdução de Sinais
5.
Cancer Discov ; 9(12): 1774-1791, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31519704

RESUMO

Long-range enhancers govern the temporal and spatial control of gene expression; however, the mechanisms that regulate enhancer activity during normal and malignant development remain poorly understood. Here, we demonstrate a role for aberrant chromatin accessibility in the regulation of MYC expression in T-cell lymphoblastic leukemia (T-ALL). Central to this process, the NOTCH1-MYC enhancer (N-Me), a long-range T cell-specific MYC enhancer, shows dynamic changes in chromatin accessibility during T-cell specification and maturation and an aberrant high degree of chromatin accessibility in mouse and human T-ALL cells. Mechanistically, we demonstrate that GATA3-driven nucleosome eviction dynamically modulates N-Me enhancer activity and is strictly required for NOTCH1-induced T-ALL initiation and maintenance. These results directly implicate aberrant regulation of chromatin accessibility at oncogenic enhancers as a mechanism of leukemic transformation. SIGNIFICANCE: MYC is a major effector of NOTCH1 oncogenic programs in T-ALL. Here, we show a major role for GATA3-mediated enhancer nucleosome eviction as a driver of MYC expression and leukemic transformation. These results support the role of aberrant chromatin accessibility and consequent oncogenic MYC enhancer activation in NOTCH1-induced T-ALL.This article is highlighted in the In This Issue feature, p. 1631.


Assuntos
Elementos Facilitadores Genéticos , Fator de Transcrição GATA3/metabolismo , Leucemia de Células T/patologia , Nucleossomos/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células Jurkat , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Camundongos , Transplante de Neoplasias , Receptor Notch1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA