Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 94(7): 673-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27089941

RESUMO

Devil facial tumour disease (DFTD) is a transmissible cancer that has brought the host species, the Tasmanian devil, to the brink of extinction. The cancer cells avoid allogeneic immune recognition by downregulating cell surface major histocompatibility complex (MHC) I expression. This should prevent CD8(+) T cell, but not natural killer (NK) cell, cytotoxicity. The reason why NK cells, normally reactive to MHC-negative cells, are not activated to kill DFTD cells has not been determined. The immune response of wild devils to DFTD, if it occurs, is uncharacterised. To investigate this, we tested 12 wild devils with DFTD, and found suggestive evidence of low levels of antibodies against DFTD cells in one devil. Eight of these devils were also analysed for cytotoxicity, however, none showed evidence for cytotoxicity against cultured DFTD cells. To establish whether mimicking activation of antitumour responses could induce cytotoxic activity against DFTD, Tasmanian devil peripheral blood mononuclear cells (PBMCs) were treated with either the mitogen Concanavalin A, the Toll-like receptor agonist polyinosinic:polycytidylic acid or recombinant Tasmanian devil IL-2. All induced the PBMC cells to kill cultured DFTD cells, suggesting that activation does not occur after encounter with DFTD cells in vivo, but can be induced. The identification of agents that activate cytotoxicity against DFTD target cells is critical for developing strategies to protect against DFTD. Such agents could function as adjuvants to induce functional immune responses capable of targeting DFTD cells and tumours in vivo.


Assuntos
Neoplasias Faciais/patologia , Leucócitos Mononucleares/citologia , Marsupiais/metabolismo , Mitógenos/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Concanavalina A/farmacologia , Meios de Cultivo Condicionados/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Neoplasias Faciais/imunologia , Interleucina-2/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Poli I-C/farmacologia , Receptor 3 Toll-Like/agonistas
2.
Dis Model Mech ; 7(6): 649-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682784

RESUMO

Canavan disease is a leukodystrophy caused by mutations in the ASPA gene. This gene encodes the enzyme that converts N-acetylaspartate into acetate and aspartic acid. In Canavan disease, spongiform encephalopathy of the brain causes progressive mental retardation, motor deficit and death. We have isolated a mouse with a novel ethylnitrosourea-induced mutation in Aspa. This mutant, named deaf14, carries a c.516T>A mutation that is predicted to cause a p.Y172X protein truncation. No full-length ASPA protein is produced in deaf14 brain and there is extensive spongy degeneration. Interestingly, we found that deaf14 mice have an attenuated startle in response to loud noise. The first auditory brainstem response peak has normal latency and amplitude but peaks II, III, IV and V have increased latency and decreased amplitude in deaf14 mice. Our work reveals a hitherto unappreciated pathology in a mouse model of Canavan disease, implying that auditory brainstem response testing could be used in diagnosis and to monitor the progression of this disease.


Assuntos
Doença de Canavan/fisiopatologia , Sistema Nervoso Central/patologia , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Transtornos da Audição/fisiopatologia , Animais , Camundongos , Camundongos Mutantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA