Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 606(7913): 358-367, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35477154

RESUMO

The composition of the intestinal microbiome varies considerably between individuals and is correlated with health1. Understanding the extent to which, and how, host genetics contributes to this variation is essential yet has proved to be difficult, as few associations have been replicated, particularly in humans2. Here we study the effect of host genotype on the composition of the intestinal microbiota in a large mosaic pig population. We show that, under conditions of exacerbated genetic diversity and environmental uniformity, microbiota composition and the abundance of specific taxa are heritable. We map a quantitative trait locus affecting the abundance of Erysipelotrichaceae species and show that it is caused by a 2.3 kb deletion in the gene encoding N-acetyl-galactosaminyl-transferase that underpins the ABO blood group in humans. We show that this deletion is a ≥3.5-million-year-old trans-species polymorphism under balancing selection. We demonstrate that it decreases the concentrations of N-acetyl-galactosamine in the gut, and thereby reduces the abundance of Erysipelotrichaceae that can import and catabolize N-acetyl-galactosamine. Our results provide very strong evidence for an effect of the host genotype on the abundance of specific bacteria in the intestine combined with insights into the molecular mechanisms that underpin this association. Our data pave the way towards identifying the same effect in rural human populations.


Assuntos
Sistema ABO de Grupos Sanguíneos , Acetilgalactosamina , Microbioma Gastrointestinal , Genótipo , Suínos , Sistema ABO de Grupos Sanguíneos/genética , Acetilgalactosamina/metabolismo , Animais , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/genética , N-Acetilgalactosaminiltransferases/metabolismo , Locos de Características Quantitativas , Suínos/genética , Suínos/microbiologia
2.
Genome Res ; 33(9): 1455-1464, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37793781

RESUMO

Assisted reproductive technologies (ARTs), including in vitro maturation and fertilization (IVF), are increasingly used in human and animal reproduction. Whether these technologies directly affect the rate of de novo mutation (DNM), and to what extent, has been a matter of debate. Here we take advantage of domestic cattle, characterized by complex pedigrees that are ideally suited to detect DNMs and by the systematic use of ART, to study the rate of de novo structural variation (dnSV) in this species and how it is impacted by IVF. By exploiting features of associated de novo point mutations (dnPMs) and dnSVs in clustered DNMs, we provide strong evidence that (1) IVF increases the rate of dnSV approximately fivefold, and (2) the corresponding mutations occur during the very early stages of embryonic development (one- and two-cell stage), yet primarily affect the paternal genome.


Assuntos
Desenvolvimento Embrionário , Família , Gravidez , Feminino , Animais , Bovinos , Humanos , Mutação , Linhagem , Genoma Humano
3.
Genome Res ; 33(10): 1848-1864, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751945

RESUMO

We report the generation of an organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by the assay for transposase accessible chromatin using sequencing (ATAC-seq). We regroup these regulatory elements in 16 components by nonnegative matrix factorization. Correlation between the genome-wide density of peaks and transcription start sites, correlation between peak accessibility and expression of neighboring genes, and enrichment in transcription factor binding motifs support their regulatory potential. Using a previously established catalog of 12,736,643 variants, we show that the proportion of single-nucleotide polymorphisms mapping to ATAC-seq peaks is higher than expected and that this is owing to an approximately 1.3-fold higher mutation rate within peaks. Their site frequency spectrum indicates that variants in ATAC-seq peaks are subject to purifying selection. We generate eQTL data sets for liver and blood and show that variants that drive eQTL fall into liver- and blood-specific ATAC-seq peaks more often than expected by chance. We combine ATAC-seq and eQTL data to estimate that the proportion of regulatory variants mapping to ATAC-seq peaks is approximately one in three and that the proportion of variants mapping to ATAC-seq peaks that are regulatory is approximately one in 25. We discuss the implication of these findings on the utility of ATAC-seq information to improve the accuracy of genomic selection.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Bovinos/genética , Análise de Sequência de DNA , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico
4.
PLoS Genet ; 17(7): e1009331, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288907

RESUMO

Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactating cows. CM is under genetic control, and a prominent CM resistance QTL located on chromosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing a fine-mapping and through expression QTL mapping, we showed that the group-specific component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate causal gene for the QTL. The multiplicated alleles are associated with increased GC expression and low CM resistance. Ample evidence from functional genomics data supports the presence of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed that strong positive selection swept the region near the CNV, and haplotypes associated with the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared underlying biology for these effects may revolve around the vitamin D pathway. These findings together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory element located within a CNV can alter gene expression and affect multiple economically important traits.


Assuntos
Elementos Facilitadores Genéticos , Mastite Bovina/genética , Proteína de Ligação a Vitamina D/genética , Animais , Bovinos , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
5.
BMC Genomics ; 24(1): 225, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127590

RESUMO

BACKGROUND: Structural variants (SVs) are chromosomal segments that differ between genomes, such as deletions, duplications, insertions, inversions and translocations. The genomics revolution enabled the discovery of sub-microscopic SVs via array and whole-genome sequencing (WGS) data, paving the way to unravel the functional impact of SVs. Recent human expression QTL mapping studies demonstrated that SVs play a disproportionally large role in altering gene expression, underlining the importance of including SVs in genetic analyses. Therefore, this study aimed to generate and explore a high-quality bovine SV catalogue exploiting a unique cattle family cohort data (total 266 samples, forming 127 trios). RESULTS: We curated 13,731 SVs segregating in the population, consisting of 12,201 deletions, 1,509 duplications, and 21 multi-allelic CNVs (> 50-bp). Of these, we validated a subset of copy number variants (CNVs) utilising a direct genotyping approach in an independent cohort, indicating that at least 62% of the CNVs are true variants, segregating in the population. Among gene-disrupting SVs, we prioritised two likely high impact duplications, encompassing ORM1 and POPDC3 genes, respectively. Liver expression QTL mapping results revealed that these duplications are likely causing altered gene expression, confirming the functional importance of SVs. Although most of the accurately genotyped CNVs are tagged by single nucleotide polymorphisms (SNPs) ascertained in WGS data, most CNVs were not captured by individual SNPs obtained from a 50K genotyping array. CONCLUSION: We generated a high-quality SV catalogue exploiting unique whole genome sequenced bovine family cohort data. Two high impact duplications upregulating the ORM1 and POPDC3 are putative candidates for postpartum feed intake and hoof health traits, thus warranting further investigation. Generally, CNVs were in low LD with SNPs on the 50K array. Hence, it remains crucial to incorporate CNVs via means other than tagging SNPs, such as investigation of tagging haplotypes, direct imputation of CNVs, or direct genotyping as done in the current study. The SV catalogue and the custom genotyping array generated in the current study will serve as valuable resources accelerating utilisation of full spectrum of genetic variants in bovine genomes.


Assuntos
Genoma , Genômica , Feminino , Humanos , Bovinos , Animais , Genômica/métodos , Genótipo , Variações do Número de Cópias de DNA , Haplótipos , Polimorfismo de Nucleotídeo Único , Proteínas Musculares/genética , Moléculas de Adesão Celular/genética
6.
Genome Res ; 30(8): 1201-1207, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32591360

RESUMO

Biological products of importance in food (e.g., milk) and medical (e.g., donor blood-derived products) sciences often correspond to mixtures of samples contributed by multiple individuals. Identifying which individuals contributed to the mixture and in what proportions may be of interest in several circumstances. We herein present a method that allows to do this by shallow whole-genome sequencing of the DNA in mixed samples from hundreds of donors. We show the efficacy of the approach for the detection of cows with subclinical mastitis by analysis of farms' tank mixtures containing milk from as many as 500 cows.


Assuntos
Genoma/genética , Programas de Rastreamento/métodos , Mastite/diagnóstico , Mastite/genética , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Contagem de Células/métodos , Feminino , Frequência do Gene/genética , Técnicas de Genotipagem , Leite , Polimorfismo de Nucleotídeo Único/genética
7.
Genet Sel Evol ; 55(1): 83, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017417

RESUMO

BACKGROUND: Cohorts of individuals that have been genotyped and phenotyped for genomic selection programs offer the opportunity to better understand genetic variation associated with complex traits. Here, we performed an association study for traits related to body size and muscular development in intensively selected beef cattle. We leveraged multiple trait information to refine and interpret the significant associations. RESULTS: After a multiple-step genotype imputation to the sequence-level for 14,762 Belgian Blue beef (BBB) cows, we performed a genome-wide association study (GWAS) for 11 traits related to muscular development and body size. The 37 identified genome-wide significant quantitative trait loci (QTL) could be condensed in 11 unique QTL regions based on their position. Evidence for pleiotropic effects was found in most of these regions (e.g., correlated association signals, overlap between credible sets (CS) of candidate variants). Thus, we applied a multiple-trait approach to combine information from different traits to refine the CS. In several QTL regions, we identified strong candidate genes known to be related to growth and height in other species such as LCORL-NCAPG or CCND2. For some of these genes, relevant candidate variants were identified in the CS, including three new missense variants in EZH2, PAPPA2 and ADAM12, possibly two additional coding variants in LCORL, and candidate regulatory variants linked to CCND2 and ARMC12. Strikingly, four other QTL regions associated with dimension or muscular development traits were related to five (recessive) deleterious coding variants previously identified. CONCLUSIONS: Our study further supports that a set of common genes controls body size across mammalian species. In particular, we added new genes to the list of those associated with height in both humans and cattle. We also identified new strong candidate causal variants in some of these genes, strengthening the evidence of their causality. Several breed-specific recessive deleterious variants were identified in our QTL regions, probably as a result of the extreme selection for muscular development in BBB cattle.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Feminino , Bovinos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Bélgica , Fenótipo , Tamanho Corporal/genética , Mamíferos/genética , Polimorfismo de Nucleotídeo Único
8.
BMC Genomics ; 23(1): 130, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164677

RESUMO

BACKGROUND: Accurate haplotype reconstruction is required in many applications in quantitative and population genomics. Different phasing methods are available but their accuracy must be evaluated for samples with different properties (population structure, marker density, etc.). We herein took advantage of whole-genome sequence data available for a Holstein cattle pedigree containing 264 individuals, including 98 trios, to evaluate several population-based phasing methods. This data represents a typical example of a livestock population, with low effective population size, high levels of relatedness and long-range linkage disequilibrium. RESULTS: After stringent filtering of our sequence data, we evaluated several population-based phasing programs including one or more versions of AlphaPhase, ShapeIT, Beagle, Eagle and FImpute. To that end we used 98 individuals having both parents sequenced for validation. Their haplotypes reconstructed based on Mendelian segregation rules were considered the gold standard to assess the performance of population-based methods in two scenarios. In the first one, only these 98 individuals were phased, while in the second one, all the 264 sequenced individuals were phased simultaneously, ignoring the pedigree relationships. We assessed phasing accuracy based on switch error counts (SEC) and rates (SER), lengths of correctly phased haplotypes and the probability that there is no phasing error between a pair of SNPs as a function of their distance. For most evaluated metrics or scenarios, the best software was either ShapeIT4.1 or Beagle5.2, both methods resulting in particularly high phasing accuracies. For instance, ShapeIT4.1 achieved a median SEC of 50 per individual and a mean haplotype block length of 24.1 Mb (scenario 2). These statistics are remarkable since the methods were evaluated with a map of 8,400,000 SNPs, and this corresponds to only one switch error every 40,000 phased informative markers. When more relatives were included in the data (scenario 2), FImpute3.0 reconstructed extremely long segments without errors. CONCLUSIONS: We report extremely high phasing accuracies in a typical livestock sample. ShapeIT4.1 and Beagle5.2 proved to be the most accurate, particularly for phasing long segments and in the first scenario. Nevertheless, most tools achieved high accuracy at short distances and would be suitable for applications requiring only local haplotypes.


Assuntos
Benchmarking , Genoma , Algoritmos , Animais , Bovinos/genética , Haplótipos , Linhagem , Polimorfismo de Nucleotídeo Único , Software
9.
Gastroenterology ; 154(8): 2165-2177, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501442

RESUMO

BACKGROUND & AIMS: A few rare monogenic primary immunodeficiencies (PIDs) are characterized by chronic intestinal inflammation that resembles Crohn's disease (CD). We investigated whether 23 genes associated with 10 of these monogenic disorders contain common, low-frequency, or rare variants that increase risk for CD. METHODS: Common and low frequency variants in 1 Mb loci centered on the candidate genes were analyzed using meta-data corresponding to genotypes of approximately 17,000 patients with CD or without CD (controls) in Europe. The contribution of rare variants was assessed by high-throughput sequencing of 4750 individuals, including 660 early-onset and/or familial cases among the 2390 patients with CD. Variants were expressed from vectors in SW480 or HeLa cells and functions of their products were analyzed in immunofluorescence, luciferase, immunoprecipitation, and immunoblot assays. RESULTS: We reproduced the association of the interleukin 10 locus with CD (P = .007), although none of the significantly associated variants modified the coding sequence of interleukin 10. We found XIAP to be significantly enriched for rare coding mutations in patients with CD vs controls (P = .02). We identified 4 previously unreported missense variants associated with CD. Variants in XIAP cause the PID X-linked lymphoproliferative disease type 2, yet none of the carriers of these variants had all the clinical features of X-linked lymphoproliferative disease type 2. Identified XIAP variants S123N, R233Q, and P257A were associated with an impaired activation of NOD2 signaling after muramyl dipeptide stimulation. CONCLUSIONS: In a systematic analysis of variants in 23 PID-associated genes, we confirmed the association of variants in XIAP with CD. Further screenings for CD-associated variants and analyses of their functions could increase our understanding of the relationship between PID-associated genes and CD pathogenesis.


Assuntos
Doença de Crohn/genética , Síndromes de Imunodeficiência/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bélgica , Células Cultivadas , Criança , Pré-Escolar , Doença de Crohn/sangue , Doença de Crohn/imunologia , Feminino , Imunofluorescência , França , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndromes de Imunodeficiência/sangue , Síndromes de Imunodeficiência/imunologia , Interleucina-10/genética , Masculino , Pessoa de Meia-Idade , Monócitos , Mutação de Sentido Incorreto , Proteína Adaptadora de Sinalização NOD2/metabolismo , Cultura Primária de Células , Análise de Sequência de DNA , Transdução de Sinais/genética , Adulto Jovem
10.
Genome Res ; 26(10): 1323-1332, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27516620

RESUMO

We herein study genetic recombination in three cattle populations from France, New Zealand, and the Netherlands. We identify 2,395,177 crossover (CO) events in 94,516 male gametes, and 579,996 CO events in 25,332 female gametes. The average number of COs was found to be larger in males (23.3) than in females (21.4). The heritability of global recombination rate (GRR) was estimated at 0.13 in males and 0.08 in females, with a genetic correlation of 0.66 indicating that shared variants are influencing GRR in both sexes. A genome-wide association study identified seven quantitative trait loci (QTL) for GRR. Fine-mapping following sequence-based imputation in 14,401 animals pinpointed likely causative coding (5) and noncoding (1) variants in genes known to be involved in meiotic recombination (HFM1, MSH4, RNF212, MLH3, MSH5) for 5/7 QTL, and noncoding variants (3) in RNF212B for 1/7 QTL. This suggests that this RNF212 paralog might also be involved in recombination. Most of the identified mutations had significant effects in both sexes, with three of them each accounting for ∼10% of the genetic variance in males.


Assuntos
Bovinos/genética , Recombinação Homóloga , Polimorfismo Genético , Animais , Feminino , Estudo de Associação Genômica Ampla , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Meiose/genética , Mutação , Locos de Características Quantitativas , Fatores Sexuais
11.
Genome Res ; 26(10): 1333-1341, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27646536

RESUMO

We herein report the result of a large-scale, next generation sequencing (NGS)-based screen for embryonic lethal (EL) mutations in Belgian beef and New Zealand dairy cattle. We estimated by simulation that cattle might carry, on average, ∼0.5 recessive EL mutations. We mined exome sequence data from >600 animals, and identified 1377 stop-gain, 3139 frame-shift, 1341 splice-site, 22,939 disruptive missense, 62,399 benign missense, and 92,163 synonymous variants. We show that cattle have a comparable load of loss-of-function (LoF) variants (defined as stop-gain, frame-shift, or splice-site variants) as humans despite having a more variable exome. We genotyped >40,000 animals for up to 296 LoF and 3483 disruptive missense, breed-specific variants. We identified candidate EL mutations based on the observation of a significant depletion in homozygotes. We estimated the proportion of EL mutations at 15% of tested LoF and 6% of tested disruptive missense variants. We confirmed the EL nature of nine candidate variants by genotyping 200 carrier × carrier trios, and demonstrating the absence of homozygous offspring. The nine identified EL mutations segregate at frequencies ranging from 1.2% to 6.6% in the studied populations and collectively account for the mortality of ∼0.6% of conceptuses. We show that EL mutations preferentially affect gene products fulfilling basic cellular functions. The resulting information will be useful to avoid at-risk matings, thereby improving fertility.


Assuntos
Bovinos/genética , Fertilidade/genética , Genes Letais , Mutação , Animais , Bovinos/embriologia , Bovinos/fisiologia , Testes Genéticos/métodos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Genética Reversa/métodos , Análise de Sequência de DNA/métodos
12.
Nature ; 482(7383): 81-4, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22297974

RESUMO

Colour sidedness is a dominantly inherited phenotype of cattle characterized by the polarization of pigmented sectors on the flanks, snout and ear tips. It is also referred to as 'lineback' or 'witrik' (which means white back), as colour-sided animals typically display a white band along their spine. Colour sidedness is documented at least since the Middle Ages and is presently segregating in several cattle breeds around the globe, including in Belgian blue and brown Swiss. Here we report that colour sidedness is determined by a first allele on chromosome 29 (Cs(29)), which results from the translocation of a 492-kilobase chromosome 6 segment encompassing KIT to chromosome 29, and a second allele on chromosome 6 (Cs(6)), derived from the first by repatriation of fused 575-kilobase chromosome 6 and 29 sequences to the KIT locus. We provide evidence that both translocation events involved circular intermediates. This is the first example, to our knowledge, of a phenotype determined by homologous yet non-syntenic alleles that result from a novel copy-number-variant-generating mechanism.


Assuntos
Bovinos/genética , Cromossomos de Mamíferos/genética , Cor de Cabelo/genética , Translocação Genética/genética , Alelos , Animais , Bovinos/classificação , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Duplicação Gênica/genética , Fusão Gênica/genética , Estudo de Associação Genômica Ampla , Genótipo , Hibridização in Situ Fluorescente , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
13.
N Engl J Med ; 371(25): 2363-74, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25470569

RESUMO

BACKGROUND: Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. METHODS: We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. RESULTS: We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells. CONCLUSIONS: We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.).


Assuntos
Acromegalia/genética , Duplicação Cromossômica , Cromossomos Humanos X , Gigantismo/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Feminino , Hormônio do Crescimento Humano/metabolismo , Humanos , Lactente , Masculino , Fenótipo , Conformação Proteica , Receptores Acoplados a Proteínas G/química
14.
Anim Genet ; 47(1): 110-3, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582259

RESUMO

In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10-bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large-scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild-type allele at the co-dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named 'cool gray'. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Bovinos/genética , Mutação da Fase de Leitura , Cor de Cabelo/genética , Animais , Genótipo , Mutação de Sentido Incorreto , Fenótipo , Pigmentação/genética , Genética Reversa , Deleção de Sequência
15.
BMC Genomics ; 16: 316, 2015 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-25895751

RESUMO

BACKGROUND: Cattle populations are characterized by regular outburst of genetic defects as a result of the extensive use of elite sires. The causative genes and mutations can nowadays be rapidly identified by means of genome-wide association studies combined with next generation DNA sequencing, provided that the causative mutations are conventional loss-of-function variants. We show in this work how the combined use of next generation DNA and RNA sequencing allows for the rapid identification of otherwise difficult to identify splice-site variants. RESULTS: We report the use of haplotype-based association mapping to identify a locus on bovine chromosome 10 that underlies autosomal recessive arthrogryposis in Belgian Blue Cattle. We identify 31 candidate mutations by resequencing the genome of four cases and 15 controls at ~10-fold depth. By analyzing RNA-Seq data from a carrier fetus, we observe skipping of the second exon of the PIGH gene, which we confirm by RT-PCR to be fully penetrant in tissues from affected calves. We identify - amongst the 31 candidate variants - a C-to-G transversion in the first intron of the PIGH gene (c211-10C > G) that is predicted to affect its acceptor splice-site. The resulting PIGH protein is likely to be non-functional as it lacks essential domains, and hence to cause arthrogryposis. CONCLUSIONS: This work illustrates how the growing arsenal of genome exploration tools continues to accelerate the identification of an even broader range of disease causing mutations, therefore improving the management and control of genetic defects in livestock.


Assuntos
Artrogripose/genética , Proteínas de Membrana/genética , Splicing de RNA , Animais , Artrogripose/etiologia , Artrogripose/veterinária , Bélgica , Bovinos , Mapeamento Cromossômico , Éxons , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Glicosilfosfatidilinositóis/metabolismo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons , Proteínas de Membrana/metabolismo , Polimorfismo de Nucleotídeo Único , Sítios de Splice de RNA , Análise de Sequência de DNA , Análise de Sequência de RNA
16.
Anim Genet ; 46(5): 566-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26370913

RESUMO

Four newborn purebred Belgian Blue calves presenting a severe form of epidermolysis bullosa were recently referred to our heredo-surveillance platform. SNP array genotyping followed by autozygosity mapping located the causative gene in a 8.3-Mb interval on bovine chromosome 24. Combining information from (i) whole-genome sequencing of an affected calf, (ii) transcriptomic data from a panel of tissues and (iii) a list of functionally ranked positional candidates pinpointed a private G to A nucleotide substitution in the LAMA3 gene that creates a premature stop codon (p.Arg2609*) in exon 60, truncating 22% of the corresponding protein. The LAMA3 gene encodes the alpha 3 subunit of the heterotrimeric laminin-332, a key constituent of the lamina lucida that is part of the skin basement membrane connecting epidermis and dermis layers. Homozygous loss-of-function mutations in this gene are known to cause severe junctional epidermolysis bullosa in human, mice, horse, sheep and dog. Overall, our data strongly support the causality of the identified gene and mutation.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Epidermólise Bolhosa Juncional/veterinária , Laminina/genética , Animais , Bovinos/classificação , Mapeamento Cromossômico , Análise Mutacional de DNA , Epidermólise Bolhosa Juncional/genética , Etanolaminofosfotransferase , Genótipo , Transcriptoma
17.
Anim Genet ; 46(4): 395-402, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25996251

RESUMO

We herein describe the realization of a genome-wide association study for scrotal hernia and cryptorchidism in Norwegian and Belgian commercial pig populations. We have used the transmission disequilibrium test to avoid spurious associations due to population stratification. By doing so, we obtained genome-wide significant signals for both diseases with SNPs located in the pseudo-autosomal region in the vicinity of the pseudo-autosomal boundary. By further analyzing these signals, we demonstrate that the observed transmission disequilibria are artifactual. We determine that transmission bias at pseudo-autosomal markers will occur (i) when analyzing traits with sex-limited expression and (ii) when the allelic frequencies at the marker locus differ between X and Y chromosomes. We show that the bias is due to the fact that (i) sires will preferentially transmit the allele enriched on the Y (respectively X) chromosome to affected sons (respectively daughters) and (ii) dams will appear to preferentially transmit the allele enriched on the Y (respectively X) to affected sons (respectively daughters), as offspring inheriting the other allele are more likely to be non-informative. We define the conditions to mitigate these issues, namely by (i) extracting information from maternal meiosis only and (ii) ignoring trios for which sire and dam have the same heterozygous genotype. We show that by applying these rules to scrotal hernia and cryptorchidism, the pseudo-autosomal signals disappear, confirming their spurious nature.


Assuntos
Estudos de Associação Genética , Desequilíbrio de Ligação , Suínos/genética , Animais , Cruzamento , Criptorquidismo/genética , Criptorquidismo/veterinária , Feminino , Frequência do Gene , Marcadores Genéticos , Genótipo , Haplótipos , Hérnia/genética , Hérnia/veterinária , Heterozigoto , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Escroto/patologia , Cromossomo X , Cromossomo Y
18.
PLoS Genet ; 8(7): e1002854, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844258

RESUMO

We use >250,000 cross-over events identified in >10,000 bovine sperm cells to perform an extensive characterization of meiotic recombination in male cattle. We map Quantitative Trait Loci (QTL) influencing genome-wide recombination rate, genome-wide hotspot usage, and locus-specific recombination rate. We fine-map three QTL and present strong evidence that genetic variants in REC8 and RNF212 influence genome-wide recombination rate, while genetic variants in PRDM9 influence genome-wide hotspot usage.


Assuntos
Troca Genética , Recombinação Homóloga/genética , Locos de Características Quantitativas/genética , Homologia de Sequência de Aminoácidos , Espermatozoides/citologia , Animais , Bovinos , Proteínas de Ciclo Celular/genética , Mapeamento Cromossômico , Ligação Genética , Genoma , Histona-Lisina N-Metiltransferase/genética , Humanos , Ligases , Masculino , Miose/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Contagem de Espermatozoides , Ubiquitina-Proteína Ligases/genética
19.
PLoS Genet ; 8(3): e1002581, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438830

RESUMO

We report association mapping of a locus on bovine chromosome 3 that underlies a Mendelian form of stunted growth in Belgian Blue Cattle (BBC). By resequencing positional candidates, we identify the causative c124-2A>G splice variant in intron 1 of the RNF11 gene, for which all affected animals are homozygous. We make the remarkable observation that 26% of healthy Belgian Blue animals carry the corresponding variant. We demonstrate in a prospective study design that approximately one third of homozygous mutants die prematurely with major inflammatory lesions, hence explaining the rarity of growth-stunted animals despite the high frequency of carriers. We provide preliminary evidence that heterozygous advantage for an as of yet unidentified phenotype may have caused a selective sweep accounting for the high frequency of the RNF11 c124-2A>G mutation in Belgian Blue Cattle.


Assuntos
Crescimento , Íntrons , Isoformas de Proteínas/genética , Splicing de RNA/genética , Animais , Proteínas de Transporte/genética , Bovinos , Proteínas de Ligação a DNA , Estudos de Associação Genética , Crescimento/genética , Crescimento/fisiologia , Haplótipos , Heterozigoto , Homozigoto , Humanos , Íntrons/genética , Mutação , Fenótipo , Homologia de Sequência de Aminoácidos
20.
BMC Genomics ; 15: 796, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25228463

RESUMO

BACKGROUND: Belgian Blue cattle are famous for their exceptional muscular development or "double-muscling". This defining feature emerged following the fixation of a loss-of-function variant in the myostatin gene in the eighties. Since then, sustained selection has further increased muscle mass of Belgian Blue animals to a comparable extent. In the present paper, we study the genetic determinants of this second wave of muscle growth. RESULTS: A scan for selective sweeps did not reveal the recent fixation of another allele with major effect on muscularity. However, a genome-wide association study identified two genome-wide significant and three suggestive quantitative trait loci (QTL) affecting specific muscle groups and jointly explaining 8-21% of the heritability. The top two QTL are caused by presumably recent mutations on unique haplotypes that have rapidly risen in frequency in the population. While one appears on its way to fixation, the ascent of the other is compromised as the likely underlying MRC2 mutation causes crooked tail syndrome in homozygotes. Genomic prediction models indicate that the residual additive variance is largely polygenic. CONCLUSIONS: Contrary to complex traits in humans which have a near-exclusive polygenic architecture, muscle mass in beef cattle (as other production traits under directional selection), appears to be controlled by (i) a handful of recent mutations with large effect that rapidly sweep through the population, and (ii) a large number of presumably older variants with very small effects that rise slowly in the population (polygenic adaptation).


Assuntos
Evolução Molecular , Músculos/anatomia & histologia , Seleção Genética , Animais , Bovinos , Haplótipos/genética , Homozigoto , Mutação , Tamanho do Órgão/genética , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA