Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38869550

RESUMO

High-throughput methods are extremely important in today's materials science, especially in the case of thin film characterization. The micro-combinatorial method enables the deposition and characterization of entire multicomponent thin film systems within a single sample. In this paper, we report the application of this method for the comprehensive TEM characterization of the Y-Ti-O layer system. Variable composition samples (YxTi1-xOy) were prepared by dual DC magnetron sputtering, covering the entire (0 ≤ x ≤ 1) concentration range. The structure and morphology of phases formed in both as-deposited and annealed samples at 600, 700, and 800 °C were revealed as a function of Y-Ti composition (x). A comprehensive map showing the appropriate amorphous and crystalline phases, and their occurrence regions of the whole Y-Ti-O layer system, was revealed. Thanks to the applied method, it was shown with ease that at the given experimental conditions, the Y2Ti2O7 phase with a pyrochlore structure forms already at 700 °C without the TiO2 and Y2O3 by-phases, which is remarkably lower than the required temperature for most physical preparation methods, demonstrating the importance and benefits of creating phase maps in materials science and technology.

2.
Acta Crystallogr C ; 67(Pt 6): i33-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21633146

RESUMO

Wulfenite [lead(II) molybdate(VI)] is known as a scheelite structure in the I4(1)/a space group. The structure of the unusual `hemimorphic' wulfenite crystals from the Meǽica mine was refined in the noncentrosymmetric space group I ̅4 using a Pb/Mo exchange disorder model with the approximate composition Pb(0.94)Mo(0.06)[MoO(4)]. Pb atoms in the 2b positions are substituted by Mo at about 12%. The crystal is shown to be twinned by inversion. Hemimorphism may result from the short-range chemical ordering of the metal atoms at the 2b positions.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947665

RESUMO

This paper reports an investigation of the structural, chemical and electrical properties of ultra-thin (5 nm) aluminum nitride (AlN) films grown by plasma enhanced atomic layer deposition (PE-ALD) on gallium nitride (GaN). A uniform and conformal coverage of the GaN substrate was demonstrated by morphological analyses of as-deposited AlN films. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) analyses showed a sharp epitaxial interface with GaN for the first AlN atomic layers, while a deviation from the perfect wurtzite stacking and oxygen contamination were detected in the upper part of the film. This epitaxial interface resulted in the formation of a two-dimensional electron gas (2DEG) with a sheet charge density ns ≈ 1.45 × 1012 cm-2, revealed by Hg-probe capacitance-voltage (C-V) analyses. Nanoscale resolution current mapping and current-voltage (I-V) measurements by conductive atomic force microscopy (C-AFM) showed a highly homogeneous current transport through the 5 nm AlN barrier, while a uniform flat-band voltage (VFB ≈ 0.3 V) for the AlN/GaN heterostructure was demonstrated by scanning capacitance microscopy (SCM). Electron transport through the AlN film was shown to follow the Fowler-Nordheim (FN) tunneling mechanism with an average barrier height of <ΦB> = 2.08 eV, in good agreement with the expected AlN/GaN conduction band offset.

4.
Nanoscale ; 12(37): 19470-19476, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32960193

RESUMO

The possibility for kinetic stabilization of prospective 2D AlN was explored by rationalizing metal organic chemical vapor deposition (MOCVD) processes of AlN on epitaxial graphene. From the wide range of temperatures which can be covered in the same MOCVD reactor, the deposition was performed at the selected temperatures of 700, 900, and 1240 °C. The characterization of the structures by atomic force microscopy, electron microscopy and Raman spectroscopy revealed a broad range of surface nucleation and intercalation phenomena. These phenomena included the abundant formation of nucleation sites on graphene, the fragmentation of the graphene layers which accelerated with the deposition temperature, the delivery of excess precursor-derived carbon adatoms to the surface, as well as intercalation of sub-layers of aluminum atoms at the graphene/SiC interface. The conceptual understanding of these nanoscale phenomena was supported by our previous comprehensive ab initio molecular dynamics (AIMD) simulations of the surface reaction of trimethylaluminum, (CH3)3Al, precursor with graphene. A case of applying trimethylindium, (CH3)3In, precursor to epitaxial graphene was considered in a comparative way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA