Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 234(4): 478-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25130537

RESUMO

The oviducts contain high-grade serous cancer (HGSC) precursors (serous tubal intraepithelial neoplasia or STINs), which are γ-H2AX(p) - and TP53 mutation-positive. Although they express wild-type p53, secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer; moreover, both STINs and SCOUTs share a loss of PAX2 expression (PAX2(n) ). We evaluated PAX2 expression in proliferating adult and embryonic oviductal cells, normal mucosa, SCOUTs, Walthard cell nests (WCNs), STINs, and HGSCs, and the expression of genes chosen empirically or from SCOUT expression arrays. Clones generated in vitro from embryonic gynaecological tract and adult Fallopian tube were Krt7(p) /PAX2(n) /EZH2(p) and underwent ciliated (PAX2(n) /EZH2(n) /FOXJ1(p) ) and basal (Krt7(n) /EZH2(n) /Krt5(p) ) differentiation. Similarly, non-ciliated cells in normal mucosa were PAX2(p) but became PAX2(n) in multi-layered epithelium undergoing ciliated or basal (WCN) cell differentiation. PAX2(n) SCOUTs fell into two groups: type 1 were secretory or secretory/ciliated with a 'tubal' phenotype and were ALDH1(n) and ß-catenin(mem) (membraneous only). Type 2 displayed a columnar to pseudostratified (endometrioid) phenotype, with an EZH2(p) , ALDH1(p) , ß-catenin(nc) (nuclear and cytoplasmic), stathmin(p) , LEF1(p) , RCN1(p) , and RUNX2(p) expression signature. STINs and HGSCs shared the type 1 immunophenotype of PAX2(n) , ALDH1(n) , ß-catenin(mem) , but highly expressed EZH2(p) , LEF1(p) , RCN1(p) , and stathmin(p) . This study, for the first time, links PAX2(n) with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs, and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumour suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2), calcium binding (RCN1), and oncogenesis (stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target for early prevention.


Assuntos
Neoplasias das Tubas Uterinas/genética , Células-Tronco Neoplásicas/patologia , Fator de Transcrição PAX2/genética , Diferenciação Celular/genética , Linhagem da Célula , Epitélio/patologia , Neoplasias das Tubas Uterinas/patologia , Tubas Uterinas/patologia , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
2.
J Exp Med ; 219(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35254402

RESUMO

Crouzon syndrome with acanthosis nigricans (CAN, a rare type of craniosynostosis characterized by premature suture fusion and neurological impairments) has been linked to a gain-of-function mutation (p.Ala391Glu) in fibroblast growth factor receptor 3 (FGFR3). To characterize the CAN mutation's impact on the skull and on brain functions, we developed the first mouse model (Fgfr3A385E/+) of this syndrome. Surprisingly, Fgfr3A385E/+ mice did not exhibit craniosynostosis but did show severe memory impairments, a structurally abnormal hippocampus, low activity-dependent synaptic plasticity, and overactivation of MAPK/ERK and Akt signaling pathways in the hippocampus. Systemic or brain-specific pharmacological inhibition of FGFR3 overactivation by BGJ398 injections rescued the memory impairments observed in Fgfr3A385E/+ mice. The present study is the first to have demonstrated cognitive impairments associated with brain FGFR3 overactivation, independently of skull abnormalities. Our results provide a better understanding of FGFR3's functional role and the impact of its gain-of-function mutation on brain functions. The modulation of FGFR3 signaling might be of value for treating the neurological disorders associated with craniosynostosis.


Assuntos
Acantose Nigricans , Disostose Craniofacial , Craniossinostoses , Acantose Nigricans/complicações , Acantose Nigricans/genética , Animais , Encéfalo , Disostose Craniofacial/complicações , Disostose Craniofacial/genética , Craniossinostoses/genética , Modelos Animais de Doenças , Transtornos da Memória/genética , Camundongos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
3.
iScience ; 25(12): 105628, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36483015

RESUMO

Hearing depends on fast and sustained calcium-dependent synaptic vesicle fusion at the ribbon synapses of cochlear inner hair cells (IHCs). The implication of the canonical neuronal SNARE complex in this exocytotic process has so far remained controversial. We investigated the role of SNAP-25, a key component of this complex, in hearing, by generating and analyzing a conditional knockout mouse model allowing a targeted postnatal deletion of Snap-25 in IHCs. Mice subjected to IHC Snap-25 inactivation after hearing onset developed severe to profound deafness because of defective IHC exocytosis followed by ribbon degeneration and IHC loss. Viral transfer of Snap-25 in these mutant mice rescued their hearing function by restoring IHC exocytosis and preventing synapses and hair cells from degeneration. These results demonstrate that SNAP-25 is essential for normal hearing function, most likely by ensuring IHC exocytosis and ribbon synapse maintenance.

4.
Bone Res ; 10(1): 8, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078974

RESUMO

A gain-of-function mutation in the fibroblast growth factor receptor 3 gene (FGFR3) results in achondroplasia (ACH), the most frequent form of dwarfism. Constitutive activation of FGFR3 impairs bone formation and elongation and many signal transduction pathways. Identification of new and relevant compounds targeting the FGFR3 signaling pathway is of broad importance for the treatment of ACH, and natural plant compounds are prime drug candidate sources. Here, we found that the phenolic compound (-)-epicatechin, isolated from Theobroma cacao, effectively inhibited FGFR3's downstream signaling pathways. Transcriptomic analysis in an Fgfr3 mouse model showed that ciliary mRNA expression was modified and influenced significantly by the Indian hedgehog and PKA pathways. (-)-Epicatechin is able to rescue mRNA expression impairments that control both the structural organization of the primary cilium and ciliogenesis-related genes. In femurs isolated from a mouse model (Fgfr3Y367C/+) of ACH, we showed that (-)-epicatechin eliminated bone growth impairment during 6 days of ex vivo culture. In vivo, we confirmed that daily subcutaneous injections of (-)-epicatechin to Fgfr3Y367C/+ mice increased bone elongation and rescued the primary cilium defects observed in chondrocytes. This modification to the primary cilia promoted the typical columnar arrangement of flat proliferative chondrocytes and thus enhanced bone elongation. The results of the present proof-of-principle study support (-)-epicatechin as a potential drug for the treatment of ACH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA