Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Genomics ; 17(1): 39, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138343

RESUMO

BACKGROUND: Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. RESULTS: We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. CONCLUSION: We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Exoma/genética , Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Humano/genética , Sequência de Bases , Variações do Número de Cópias de DNA/genética
2.
JAMA ; 324(7): 663-673, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32706371

RESUMO

Importance: Severe coronavirus disease 2019 (COVID-19) can occur in younger, predominantly male, patients without preexisting medical conditions. Some individuals may have primary immunodeficiencies that predispose to severe infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To explore the presence of genetic variants associated with primary immunodeficiencies among young patients with COVID-19. Design, Setting, and Participants: Case series of pairs of brothers without medical history meeting the selection criteria of young (age <35 years) brother pairs admitted to the intensive care unit (ICU) due to severe COVID-19. Four men from 2 unrelated families were admitted to the ICUs of 4 hospitals in the Netherlands between March 23 and April 12, 2020. The final date of follow-up was May 16, 2020. Available family members were included for genetic variant segregation analysis and as controls for functional experiments. Exposure: Severe COVID-19. Main Outcome and Measures: Results of rapid clinical whole-exome sequencing, performed to identify a potential monogenic cause. Subsequently, basic genetic and immunological tests were performed in primary immune cells isolated from the patients and family members to characterize any immune defects. Results: The 4 male patients had a mean age of 26 years (range, 21-32), with no history of major chronic disease. They were previously well before developing respiratory insufficiency due to severe COVID-19, requiring mechanical ventilation in the ICU. The mean duration of ventilatory support was 10 days (range, 9-11); the mean duration of ICU stay was 13 days (range, 10-16). One patient died. Rapid clinical whole-exome sequencing of the patients and segregation in available family members identified loss-of-function variants of the X-chromosomal TLR7. In members of family 1, a maternally inherited 4-nucleotide deletion was identified (c.2129_2132del; p.[Gln710Argfs*18]); the affected members of family 2 carried a missense variant (c.2383G>T; p.[Val795Phe]). In primary peripheral blood mononuclear cells from the patients, downstream type I interferon (IFN) signaling was transcriptionally downregulated, as measured by significantly decreased mRNA expression of IRF7, IFNB1, and ISG15 on stimulation with the TLR7 agonist imiquimod as compared with family members and controls. The production of IFN-γ, a type II IFN, was decreased in patients in response to stimulation with imiquimod. Conclusions and Relevance: In this case series of 4 young male patients with severe COVID-19, rare putative loss-of-function variants of X-chromosomal TLR7 were identified that were associated with impaired type I and II IFN responses. These preliminary findings provide insights into the pathogenesis of COVID-19.


Assuntos
COVID-19/virologia , Mutação com Perda de Função , SARS-CoV-2/genética , Adulto , Ensaio de Imunoadsorção Enzimática , Evolução Fatal , Hospitalização , Humanos , Unidades de Terapia Intensiva , Leucócitos Mononucleares , Masculino , Países Baixos , Linhagem , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/isolamento & purificação , Adulto Jovem
3.
Hum Mutat ; 40(11): 1993-2000, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230393

RESUMO

Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Retroelementos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853102

RESUMO

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Assuntos
Exoma , Doenças Raras , Humanos , Doenças Raras/genética , Benchmarking , Sequenciamento do Exoma , Testes Genéticos/métodos
6.
Eur J Hum Genet ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333430

RESUMO

Clinical exome sequencing (ES) has facilitated genetic diagnosis in individuals with a rare genetic disorder by analysis of all protein-coding sequences in a single experiment. However, in 40-60% of patients, a conclusive diagnosis remains elusive. In 2-5% of these individuals, ES does identify a disease-associated monoallelic variant in a recessive disorder. We hypothesized that short-read genome sequencing (GS) might uncover a pathogenic variant on the second allele, thereby increasing diagnostic yield. We performed GS for 174 individuals in whom ES identified a monoallelic pathogenic variant in a gene associated with recessive disease related to their phenotype. GS interpretation was limited to the (non-)coding parts of the gene in which this first pathogenic variant was identified, focusing on splice-disrupting variants. Firstly, we uncovered a second pathogenic variant affecting coding sequence in five individuals, including two SNV/indel variants, two copy number variants, and one insertion. Secondly, for 24 individuals, we identified a total of 31 rare non-coding intronic SNV/indel variants, all predicted to disrupt splicing. Using functional follow-up assays, we confirmed an effect on splicing for three of these variants (in ABCA4, POLR3A and COL4A4) in three individuals. In summary, we identified a (likely) pathogenic second variant in 4.6% (8/174), and a possible diagnosis for 12.1% (21/174) of our cohort. Hence, when performing GS as first-tier diagnostic test, including the interpretation of SVs and rare intronic variants in known recessive disease genes, the overall diagnostic yield of rare disease will increase. The added diagnostic value of GS for recessive disease In our cohort of 174 individuals (84 males and 90 females) with a monoallelic pathogenic variant in genes associated with a wide and diverse range of recessive diseases (pie chart), using genome sequencing (GS) and a systematic approach (methods), we identified eight new diagnoses (4.6%). We identified a second likely pathogenic variant in eight individuals (results); In two a second coding variant was found, in three others, a rare non-coding SNV anticipated to disrupt splicing was uncovered, and in three individuals a structural rearrangement was identified (two copy number variants (CNV), and one structural variant (SV)).

7.
Genome Med ; 16(1): 32, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355605

RESUMO

BACKGROUND: To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS: We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS: Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS: GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento do Exoma
8.
Eur J Hum Genet ; 31(1): 81-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114283

RESUMO

Genome sequencing (GS) can identify novel diagnoses for patients who remain undiagnosed after routine diagnostic procedures. We tested whether GS is a better first-tier genetic diagnostic test than current standard of care (SOC) by assessing the technical and clinical validity of GS for patients with neurodevelopmental disorders (NDD). We performed both GS and exome sequencing in 150 consecutive NDD patient-parent trios. The primary outcome was diagnostic yield, calculated from disease-causing variants affecting exonic sequence of known NDD genes. GS (30%, n = 45) and SOC (28.7%, n = 43) had similar diagnostic yield. All 43 conclusive diagnoses obtained with SOC testing were also identified by GS. SOC, however, required integration of multiple test results to obtain these diagnoses. GS yielded two more conclusive diagnoses, and four more possible diagnoses than ES-based SOC (35 vs. 31). Interestingly, these six variants detected only by GS were copy number variants (CNVs). Our data demonstrate the technical and clinical validity of GS to serve as routine first-tier genetic test for patients with NDD. Although the additional diagnostic yield from GS is limited, GS comprehensively identified all variants in a single experiment, suggesting that GS constitutes a more efficient genetic diagnostic workflow.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Testes Genéticos/métodos , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento do Exoma
9.
HGG Adv ; 4(2): 100181, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36785559

RESUMO

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Precursores de RNA , Mutação , Linhagem , Retinose Pigmentar/diagnóstico , Sequenciamento Completo do Genoma , Proteínas da Matriz Extracelular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA