Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Neurosci ; 23(2): 39, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38419446

RESUMO

BACKGROUND: Medium-chain triglycerides such as decanoic acid (C10), which is one of the fatty acids that constitute dietary fats, are of substantial interest for their potential therapeutic effects on neuropsychiatric disorders. However, the effects of C10 on attention-deficit/hyperactivity disorder (ADHD) remain to be studied. We explored the effects of C10 on behavioural activity and antioxidant defences in an experimental animal model of ADHD. METHODS: To establish an experimental animal model of ADHD, neonatal rats were subjected to unilateral striatal lesions using 6-hydroxydopamine (6-OHDA). The rats sequentially underwent open-field and Y-maze tests before treatment [postnatal day 25 (PN25)]. After the subcutaneous administration of either vehicle or C10 solution (250 mg/kg) for 14 days, the behavioural tests were repeated on PN39. Next, we examined the effects of C10 on the expression of the constitutive antioxidant enzymes catalase and glutathione peroxidase-1/2 and the phase II transcription factor nuclear factor erythroid 2-related factor 2 in four different regions of the rat brain. RESULTS: Injection of 6-OHDA unilaterally into the striatum resulted in elevated locomotor activity on PN39. The administration of C10 for a period of 14 days did not alter the locomotor hyperactivity. Moreover, the administration of C10 had no significant effects on the expression of proteins related to antioxidant defences in the hippocampus, prefrontal cortex, striatum or cerebellum of both control and lesioned rats. CONCLUSIONS: The lack of significant effects of C10 in our study may depend on the dose and duration of C10 administration. Further exhaustive studies are needed to verify the efficacy and effects of different doses and treatment durations of C10 and to explore the underlying mechanisms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Ratos , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Oxidopamina/farmacologia , Antioxidantes/farmacologia , Modelos Animais de Doenças , Locomoção , Ácidos Decanoicos/uso terapêutico
2.
Adv Exp Med Biol ; 1411: 327-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949317

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a neurobehavioural disorder in children and adolescents. Although increases in oxidative stress and disturbances of neurotransmitter system such as the dopaminergic and abnormalities in several brain regions have been demonstrated, the pathophysiology of ADHD is not fully understood. Nevertheless, ADHD involves several factors that have been associated with an increase in neuroinflammation. This chapter presents an overview of factors that may increase neuroinflammation and play a potential role in the development and pathophysiology of ADHD. The altered immune response, polymorphisms in inflammatory-related genes, ADHD comorbidity with autoimmune and inflammatory disorders and prenatal exposure to inflammation are associated with alterations in offspring brain development and are a risk factor; genetic and environmental risk factors that may increase the risk for ADHD and medications can increase neuroinflammation. Evidence of an association between these factors has been an invaluable tool for research on inflammation in ADHD. Therefore, evidence studies have made it possible to generate alternative therapeutic interventions using natural products as anti-inflammatories that could have great potential against neuroinflammation in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Criança , Feminino , Humanos , Gravidez , Transtorno do Deficit de Atenção com Hiperatividade/genética , Encéfalo , Inflamação , Doenças Neuroinflamatórias , Fatores de Risco
3.
J Gen Intern Med ; 37(1): 4-14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755269

RESUMO

BACKGROUND: Colchicine is an available, safe, and effective anti-inflammatory drug and has been suggested as a COVID-19 treatment, but its usefulness in hospitalized severe COVID-19 patients has not been thoroughly demonstrated. OBJECTIVE: To address the safety and efficacy of colchicine in hospitalized patients with severe COVID-19. DESIGN: We conducted a triple-blind parallel non-stratified placebo-controlled clinical trial. PARTICIPANTS: We recruited 116 hospitalized patients with severe COVID-19 in Mexico. INTERVENTIONS: Patients were randomized to receive 1.5 mg of colchicine or placebo at the time of the recruitment in the study (baseline) and 0.5 mg BID PO to complete 10 days of treatment. MAIN MEASURES: The primary composite outcome was the progression to critical disease or death. Besides, we evaluated immunological features at baseline and after recovery or disease progression in 20 patients. KEY RESULTS: Fifty-six patients were allocated to colchicine and 60 patients received placebo. The study was suspended after the second interim analysis demonstrated colchicine had no effect on the primary outcome (OR 0.83, 95%CI 0.35-1.93, P = 0.67), nor in the days of ICU and hospital stays. Adverse events were similar between groups (OR 1.63, 95% CI 0.66-3.88, P = 0.37). After colchicine treatment, patients had higher BUN and lower serum levels of IL-8, IL-12p70, and IL-17A. CONCLUSIONS: Colchicine is safe but not effective in the treatment of severe COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04367168.


Assuntos
Tratamento Farmacológico da COVID-19 , Colchicina/efeitos adversos , Hospitalização , Humanos , SARS-CoV-2 , Resultado do Tratamento
4.
J Nucl Cardiol ; 29(4): 1826-1831, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33959843

RESUMO

Aneurysmal coronary artery disease includes coronary artery aneurysms and ectasia; this condition has been associated with poor long-term outcomes. Few studies have explored myocardial blood flow 13N-ammonia PET/CT MPI added value. We present a 45-year-old man who came to the emergency department with chest pain. After a physical examination and laboratory studies, he was diagnosed with very high-risk unstable angina and referred to the catheterization laboratory. Coronary angiography showed the culprit lesion in the LCx and was treated by angioplasty and stent. LAD was found with coronary artery ectasia (TIMI 2 flow grade) and the RCA with aneurysmal disease in the proximal and middle segments (TIMI 3 flow grade). Medical treatment was decided for these findings and the patient was discharged. Two weeks later, we performed a 13N-ammonia PET/CT MPI founding apical, inferior, and inferoseptal severe ischemia, and reduced hyperemic coronary blood flow and coronary flow reserve in the RCA territory. Flow was normal in the LAD territory. Although coronary angiography remains the gold standard for evaluating these coronary abnormalities, it does not show the physiological compromise. Therefore 13N-ammonia PET/CT MPI should be performed as a complementary noninvasive imaging approach.


Assuntos
Doença da Artéria Coronariana , Amônia , Angiografia Coronária , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Circulação Coronária/fisiologia , Vasos Coronários , Dilatação Patológica/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
5.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209800

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disease characterised by insulin deficiency, resulting in hyperglycaemia, a characteristic symptom of type 2 diabetes mellitus (DM2). DM substantially affects numerous metabolic pathways, resulting in ß-cell dysfunction, insulin resistance, abnormal blood glucose levels, impaired lipid metabolism, inflammatory processes, and excessive oxidative stress. Oxidative stress can affect the body's normal physiological function and cause numerous cellular and molecular changes, such as mitochondrial dysfunction. Animal models are useful for exploring the cellular and molecular mechanisms of DM and improving novel therapeutics for their safe use in human beings. Due to their health benefits, there is significant interest in a wide range of natural compounds that can act as naturally occurring anti-diabetic compounds. Due to rodent models' relatively similar physiology to humans and ease of handling and housing, they are widely used as pre-clinical models for studying several metabolic disorders. In this review, we analyse the currently available rodent animal models of DM and their advantages and disadvantages and highlight the potential anti-oxidative effects of natural compounds and their mechanisms of action.


Assuntos
Produtos Biológicos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Estresse Oxidativo/fisiologia , Roedores
6.
Molecules ; 25(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260783

RESUMO

Oxidative stress is a crucial event underlying several pediatric neurological diseases, such as the central nervous system (CNS) tumors, autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Neuroprotective therapy with natural compounds used as antioxidants has the potential to delay, ameliorate or prevent several pediatric neurological diseases. The present review provides an overview of the most recent research outcomes following quercetin treatment for CNS tumors, ASD and ADHD as well as describes the potential in vitro and in vivo ameliorative effect on oxidative stress of bioactive natural compounds, which seems like a promising future therapy for these diseases. The neuroprotective effects of quercetin against oxidative stress can also be applied in the management of several neurodegenerative disorders with effects such as anti-cancer, anti-inflammatory, anti-viral, anti-obesity and anti-microbial. Therefore, quercetin appears to be a suitable adjuvant for therapy against pediatric neurological diseases.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Quercetina/uso terapêutico , Criança , Humanos
7.
Am J Addict ; 27(8): 625-631, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30265430

RESUMO

BACKGROUND AND OBJECTIVES: Substance use disorders (SUDs) have high comorbidities with psychiatric disorders. Childhood and adolescence are particularly vulnerable developmental periods for the onset of SUDs. The objective of this study was to explore the differences, if any, between Mexican adolescents and young adults with respect to the prevalences of groups of psychiatric disorders, the types of substances used and the social factors involved. METHODS: This cross-sectional study included 781 patients evaluated at the Youth Integration Center in Mexico City. The diagnostic criteria for SUDs and psychiatric disorders were defined according to the DSM-IV and ICD-10. Associations between SUDs and psychiatric disorders were evaluated via multivariate analysis using logistic regression models. RESULTS: The adolescents were more frequently substance abusers, whereas the adults had legal problems more often than the adolescents. We showed that adolescents using inhalants or cocaine were 1.62 more likely to have attention deficit hyperactivity disorder (ADHD). Moreover, adults using inhalants were 3.33 times more likely to meet the criteria for a psychotic disorder. DISCUSSION AND CONCLUSIONS: We found that adolescents diagnosed with ADHD were more likely to have problems with use or abuse of or dependence on inhalants, and an elevated prevalence of parental SUDs was found in both the adolescent and adult groups. SCIENTIFIC SIGNIFICANCE: Our findings indicate that earlier diagnosis and intervention are necessary in adolescents with ADHD and/or parental SUDs to prevent more advanced psychiatric diseases and adverse social consequences during adulthood. (Am J Addict 2018;XX:1-7).


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtornos Mentais/epidemiologia , Problemas Sociais/prevenção & controle , Transtornos Relacionados ao Uso de Substâncias , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Criança , Comorbidade , Estudos Transversais , Diagnóstico Duplo (Psiquiatria)/estatística & dados numéricos , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Humanos , Masculino , México/epidemiologia , Pais/psicologia , Prevalência , Psicotrópicos/farmacologia , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Transtornos Relacionados ao Uso de Substâncias/psicologia
8.
Mol Ther ; 24(5): 877-89, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26849417

RESUMO

Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Ataxia de Friedreich/prevenção & controle , Terapia Genética/métodos , Proteínas de Ligação ao Ferro/genética , Neurônios/patologia , Animais , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ataxia de Friedreich/genética , Técnicas de Silenciamento de Genes , Vetores Genéticos/administração & dosagem , Herpesviridae/genética , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Frataxina
9.
J Bioenerg Biomembr ; 47(1-2): 89-99, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25216534

RESUMO

The sustained integrity of the mitochondrial population of a cell is critical for maintained cell health, and disruption of that integrity is linked strongly to human disease, especially to the neurodegenerative diseases. These are appalling diseases causing untold levels of suffering for which treatment is woefully inadequate. Understanding the mechanisms that disturb mitochondrial homeostasis may therefore prove key to identification of potential new therapeutic pathways. Mechanisms causing mitochondrial dysfunction include the acute catastrophic loss of function caused by opening of the mitochondrial permeability transition pore (mPTP), which collapses bioenergetic function and initiates cell death. This is best characterised in ischaemic reperfusion injury, although it may also contribute to a number of other diseases. More insidious disturbances of mitochondrial homeostasis may result from impaired balance in the pathways that promote mitochondrial repair (biogenesis) and pathways that remove dysfunctional mitochondria (mitophagy). Impaired coordination between these processes is emerging as a key feature of a number of neurodegenerative and neuromuscular disorders. Here we review pathways that may prove to be valuable potential therapeutic targets, focussing on the molecular mechanisms that govern the coordination of these processes and their involvement in neurodegenerative diseases.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitofagia , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Mitocôndrias/patologia , Poro de Transição de Permeabilidade Mitocondrial , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
10.
Neurochem Res ; 40(2): 308-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25007880

RESUMO

The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPARγ was initially identified through its role in the regulation of glucose and lipid metabolism and cell differentiation. It also influences the expression or activity of a number of genes in a variety of signalling networks. These include regulation of redox balance, fatty acid oxidation, immune responses and mitochondrial function. Recent studies suggest that the PPARγ agonists may serve as good candidates for the treatment of several neurodegenerative disorders including Parkinson's disease (PD), Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis, even though multiple etiological factors contribute to the development of these disorders. Recent reports have also signposted a role for PPARγ coactivator-1α (PGC-1α) in several neurodegenerative disorders including PD. In this review, we explore the current knowledge of mechanisms underlying the beneficial effects of PPARγ agonists and PGC-1α in models of PD.


Assuntos
PPAR gama/agonistas , Doença de Parkinson/tratamento farmacológico , Fatores de Transcrição/efeitos dos fármacos , Animais , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo
11.
Front Neurosci ; 17: 1186520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575308

RESUMO

The psychostimulant methylphenidate (MPH) is the first-line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), but has numerous adverse side effects. The PPARγ receptor agonist pioglitazone (PIO) is known to improve mitochondrial bioenergetics and antioxidant capacity, both of which may be deficient in ADHD, suggesting utility as an adjunct therapy. Here, we assessed the effects of PIO on ADHD-like symptoms, mitochondrial biogenesis and antioxidant pathways in multiple brain regions of neonate rats with unilateral striatal lesions induced by 6-hydroxydopamine (6-OHDA) as an experimental ADHD model. Unilateral striatal injection of 6-OHDA reduced ipsilateral dopaminergic innervation by 33% and increased locomotor activity. This locomotor hyperactivity was not altered by PIO treatment for 14 days. However, PIO increased the expression of proteins contributing to mitochondrial biogenesis in the striatum, hippocampus, cerebellum and prefrontal cortex of 6-OHDA-lesioned rats. In addition, PIO treatment enhanced the expression of the phase II transcription factor Nrf2 in the striatum, prefrontal cortex and cerebellum. In contrast, no change in the antioxidant enzyme catalase was observed in any of the brain regions analyzed. Thus, PIO may improve mitochondrial biogenesis and phase 2 detoxification in the ADHD brain. Further studies are required to determine if different dose regimens can exert more comprehensive therapeutic effects against ADHD neuropathology and behavior.

12.
Cell Biochem Biophys ; 81(1): 105-115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346546

RESUMO

Atomoxetine (ATX) is a presynaptic norepinephrine transporter (NET) inhibitor widely prescribed for attention-deficit/hyperactivity disorder (ADHD) due to its low abuse potential and absence of psychostimulant effects. While NET inhibition is implicated in the clinical response, several additional pharmacoactivities may contribute to clinical efficacy or unwanted side effects. We recently reported that ATX can dose-dependently alter mitochondrial function and cellular redox status. Here, we assessed potential alterations in mitochondrial biogenesis, mitochondrial dynamics and cellular antioxidant capacity following high- and low-dose ATX treatment of differentiated human neuroblastoma cells. Human SH-SY5Y neuroblastoma cells were treated with ATX (1, 5, 10, 20 and 50 µM) for 7 days under differentiation culture conditions. Changes in the expression levels of protein markers for mitochondrial biogenesis, fusion and fission as well as of antioxidant proteins were analysed by Western blot. High-dose ATX (50 µM) reduced while low-dose ATX (10 µM) increased mitochondrial biogenesis as evidenced by parallel changes in SDHA, COX-I, PGC1α and TFAM expression. High-dose ATX also reduced mitochondrial fusion as evidenced by OPA1 and MFN2 downregulation, and mitochondrial fission as indicated by DRP1 and Fis1 downregulation. In contrast, ATX did not alter expression of the antioxidant enzymes SOD1 and catalase, the phase II transcription factor Nfr2, or the Nfr2-regulated antioxidant enzyme NQO1. Clinical responses and side effects of ATX may be mediated by dose-dependent modulation of mitochondrial biogenesis and dynamics as well as NET inhibition.


Assuntos
Antioxidantes , Neuroblastoma , Humanos , Cloridrato de Atomoxetina/farmacologia , Antioxidantes/farmacologia , Biogênese de Organelas , Neurônios
13.
Eur Heart J Case Rep ; 7(11): ytad425, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38426048

RESUMO

Background: Infective endocarditis is a challenging diagnosis that usually requires cardiovascular image confirmation as part of the approach. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) is an imaging technique more sensible for the diagnosis of prosthetic valve endocarditis (PVE) when echocardiography is inconclusive. Case summary: We present the case of a 35-year-old man who had a previous Bentall-De Bono procedure 4 years prior that included biological, national institute of cardiology (INC)-type, locally manufactured aortic valve replacement and woven Dacron tube graft implantation in the ascending aorta. He was admitted because of dyspnoea, oedema, fever, and syncope. A complete auriculoventricular blockade was diagnosed, requiring cardiac pacing. Also, infective endocarditis (IE) was suspected. Blood cultures showed the isolation of Bacillus licheniformis. Transthoracic echocardiography, transoesophageal echocardiography, and CT angiography were inconclusive for IE. Treatment was initiated with intravenous (IV) antibiotic therapy, and an extensive protocol for IE, including molecular imaging modalities, was ordered. 99mTc-Ubiquicidin scintigraphy was acquired without abnormal findings. Images of 18F-FDG-PET/CT revealed abnormally intense heterogeneous uptake in the prosthetic aortic annulus in a classic pattern. Applying the modified 2015 Duke criteria for PET/CT, PVE was confirmed. Discussion: Although the other imaging modalities were negative, the high clinical suspicion made it mandatory to continue the study protocol, remarking on the utility of 18F-FDG-PET/CT on patients categorized as having 'possible' endocarditis, as in our patient.

14.
Antioxidants (Basel) ; 11(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052552

RESUMO

Garlic (Allium sativum) has been used in alternative medicine to treat several diseases, such as cardiovascular and neurodegenerative diseases, cancer, and hepatic diseases. Several publications have highlighted other features of garlic, including its antibacterial, antioxidative, antihypertensive, and antithrombotic properties. The properties of garlic result from the combination of natural compounds that act synergistically and cause different effects. Some garlic-derived compounds have been studied for the treatment of several types of cancer; however, reports on the effects of garlic on neuroblastoma are scarce. Neuroblastoma is a prevalent childhood tumor for which the search for therapeutic alternatives to improve treatment without affecting the patients' quality of life continues. Garlic-derived compounds hold potential for the treatment of this type of cancer. A review of articles published to date on some garlic compounds and their effect on neuroblastoma was undertaken to comprehend the possible therapeutic role of these compounds. This review aimed to analyze the impact of some garlic compounds on cells derived from neuroblastoma.

15.
J Neurosci Res ; 88(9): 1943-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20143419

RESUMO

A typical feature of Parkinson's disease is the progressive loss of dopaminergic neurons in the substantia nigra, in which inhibition of mitochondrial complex I activity may play an important role. Rotenone or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) inhibit the mitochondrial complex I and they cause the death of substantia nigra dopaminergic neurons, thereby providing acute murine models of Parkinson's disease. We have found that increasing mitochondrial hexokinase II activity can prevent cell death in neuronal cultures treated with rotenone. As a result, we have studied the effects of hexokinase II gene transfer in vivo using a herpes simplex virus type 1 (HSV-1) amplicon vector. The placHK2 amplicon vector was injected into substantia nigra of mice that were subsequently administered rotenone or MPTP. Overexpression of hexokinase II prevented both rotenone and MPTP-induced dopaminergic neuronal cell death, as well as reducing the associated motor defects. Our results provide the first proof-of-principle that hexokinase II protects against dopaminergic neurodegeneration in vivo, emphasizing the role of this enzyme in promoting neuronal survival. Thus, the increase of hexokinase II expression by gene transfer or other means represents a promising approach to treat Parkinson's and other neurodegenerative diseases.


Assuntos
Morte Celular , Terapia Genética , Hexoquinase/genética , Hexoquinase/uso terapêutico , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/terapia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Catalepsia/induzido quimicamente , Catalepsia/metabolismo , Catalepsia/terapia , Dopamina/metabolismo , Vetores Genéticos , Herpesvirus Humano 1/genética , Hexoquinase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/terapia , Neurônios/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Rotenona , Substância Negra/metabolismo , Substância Negra/patologia , Resultado do Tratamento
16.
Antioxidants (Basel) ; 9(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114154

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder of childhood. Although abnormalities in several brain regions and disturbances of the catecholaminergic pathway have been demonstrated, the pathophysiology of ADHD is not completely understood, but as a multifactorial disorder, has been associated with an increase in oxidative stress and neuroinflammation. This review presents an overview of factors that increase oxidative stress and neuroinflammation. The imbalance between oxidants and antioxidants and also the treatment with medications are two factors that can increase oxidative damage, whereas the comorbidity between ADHD and inflammatory disorders, altered immune response, genetic and environmental associations, and polymorphisms in inflammatory-related genes can increase neuroinflammation. Evidence of an association with these factors has become valuable for research on ADHD. Such evidence opens up new intervention routes for the use of natural products as antioxidants that could have potential as a treatment against oxidative stress and neuroinflammation in ADHD.

17.
Antioxidants (Basel) ; 9(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098021

RESUMO

Psychostimulants and non-psychostimulants are the medications prescribed for the treatment of attention-deficit/hyperactivity disorder (ADHD). However, several adverse results have been linked with an increased risk of substance use and side effects. The pathophysiology of ADHD is not completely known, although it has been associated with an increase in inflammation and oxidative stress. This review presents an overview of findings following antioxidant treatment for ADHD and describes the potential amelioration of inflammation and oxidative stress using antioxidants that might have a future as multi-target adjuvant therapy in ADHD. The use of antioxidants against inflammation and oxidative conditions is an emerging field in the management of several neurodegenerative and neuropsychiatric disorders. Thus, antioxidants could be promising as an adjuvant ADHD therapy.

18.
Sci Rep ; 9(1): 13011, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506604

RESUMO

Atomoxetine (ATX) is a non-stimulant drug used in the treatment of attention-deficit/hyperactivity disorder (ADHD) and is a selective norepinephrine reuptake inhibitor. It has been shown that ATX has additional effects beyond the inhibition of norepinephrine reuptake, affecting several signal transduction pathways and alters gene expression. Here, we study alterations in oxidative stress and mitochondrial function in human differentiated SH-SY5Y cells exposed over a range of concentrations of ATX. We found that the highest concentrations of ATX in neuron-like cells, caused cell death and an increase in cytosolic and mitochondrial reactive oxygen species, and alterations in mitochondrial mass, membrane potential and autophagy. Interestingly, the dose of 10 µM ATX increased mitochondrial mass and decreased autophagy, despite the induction of cytosolic and mitochondrial reactive oxygen species. Thus, ATX has a dual effect depending on the dose used, indicating that ATX produces additional active therapeutic effects on oxidative stress and on mitochondrial function beyond the inhibition of norepinephrine reuptake.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Cloridrato de Atomoxetina/farmacologia , Mitocôndrias/patologia , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Autofagia , Células Cultivadas , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
19.
Neurochem Res ; 33(8): 1428-34, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18219574

RESUMO

Microdialysis perfusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in rat lumbar spinal cord produces severe motoneuron damage and consequently hindlimb paralysis. Here we studied the time course of the AMPA-induced neurodegenerative changes and motor alterations, and the protective effect of leupeptin, an inhibitor of calpain, a Ca(2+)-activated protease. Paralysis occurs at 4-6 h after AMPA perfusion, but cresyl violet staining showed that motoneuron damage starts at about 3 h and progresses until reaching 50% neuronal loss at 6 h and 90% loss at 12 h. In contrast, choline acetyltransferase (ChAT) immunohistochemistry revealed that the enzyme is already decreased at 30 min after AMPA perfusion and practically disappears at 3 h. Microdialysis coperfusion of leupeptin with AMPA prevented the motor alterations and paralysis and remarkably reduced both the decrement in ChAT immunoreactivity and the loss of motoneurons. We conclude that an increased Ca(2+) influx through Ca(2+)-permeable AMPA receptors activates calpain, and as a consequence ChAT content decreases earlier than other Ca(2+)-dependent processes, including the proteolytic activity of calpain, cause the death of motoneurons.


Assuntos
Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/metabolismo , Agonistas de Aminoácidos Excitatórios/toxicidade , Leupeptinas/metabolismo , Neurônios Motores/metabolismo , Medula Espinal/citologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Calpaína/metabolismo , Masculino , Neurônios Motores/citologia , Neurônios Motores/patologia , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Medula Espinal/patologia
20.
Biomed Res Int ; 2018: 4067597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596091

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder with an unknown aetiology. The pathogenic mechanisms include oxidative stress, mitochondrial dysfunction, protein dysfunction, inflammation, autophagy, apoptosis, and abnormal deposition of α-synuclein. Currently, the existing pharmacological treatments for PD cannot improve fundamentally the degenerative process of dopaminergic neurons and have numerous side effects. On the other hand, attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder of childhood and is characterised by hyperactivity, impulsivity, and inattention. The aetiology of ADHD remains unknown, although it has been suggested that its pathophysiology involves abnormalities in several brain regions, disturbances of the catecholaminergic pathway, and oxidative stress. Psychostimulants and nonpsychostimulants are the drugs prescribed for the treatment of ADHD; however, they have been associated with increased risk of substance use and have several side effects. Today, there are very few tools available to prevent or to counteract the progression of such neurological disorders. Thus, therapeutic approaches with high efficiency and fewer side effects are needed. This review presents a brief overview of the two neurological disorders and their current treatments, followed by a discussion of the natural compounds which have been studied as therapeutic agents and the mechanisms underlying the beneficial effects, in particular, the decrease in oxidative stress.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Produtos Biológicos/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Progressão da Doença , Humanos , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA