Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Assay Drug Dev Technol ; 8(6): 695-702, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21133676

RESUMO

Transient receptor potential M5 (TRPM5), a monovalent cation channel, is primarily activated by increases in intracellular calcium. However, we found unexpectedly that allyl isothiocyanate (AITC) and structural analogs triggered a membrane potential and calcium dye responses in TRPM5-HEK cells (AITC EC50 = 9.0 ± 2.4 µM, n = 5). Although AITC and its analogs were more potent on transient receptor potential A1 (TRPA1)-HEK cells (AITC EC50 = 0.23 ± 0.03 µM, n = 4), the rank order potency of these compounds were similar for TRPM5- and TRPA1-HEK cells. No response to these compounds was seen in parental HEK cells, TRPM5-CHO cells, and TRPM4b-, TRPM8-, or TRPV1-transfected HEK cells. An AITC-evoked current in TRPM5-HEK cells was confirmed in whole-cell voltage clamp recording. AITC elicited an intracellular calcium increase that was not dependent on phorpholipase C(ß)2 (PLC(ß)2) activation but was dependent on extracellular calcium concentration. TRPA1 mRNA was upregulated fourfold in TRPM5-HEK cells compared with parental cells. In contrast, TRPA1 was not upregulated in HEK cells transfected in a similar manner with TRPV1 or TRPM8 genes. The AITC response was blocked by a TRPA1 inhibitor and reduced by a TRPM5 inhibitor and by targeted TRPA1 siRNA. These results suggest that TRPM5 may play a role in upregulating endogenous expression of TRPA1, that TRPA1 activation may be an additional trigger for co-expressed calcium-dependent ion channels such as TRPM5, and that TRPM5 may amplify responses to TRPA1 ligands.


Assuntos
Canais de Cálcio/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Cátion TRPM/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Células CHO , Cálcio/metabolismo , Canais de Cálcio/genética , Cricetinae , Cricetulus , Regulação para Baixo , Células HEK293 , Humanos , Isotiocianatos/farmacologia , Potenciais da Membrana , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Canal de Cátion TRPA1 , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Paladar , Canais de Potencial de Receptor Transitório/genética , Regulação para Cima
2.
Assay Drug Dev Technol ; 8(6): 703-13, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21158685

RESUMO

Transient receptor potential melastatin-5 (TRPM5) is a calcium-gated monovalent cation channel expressed in highly specialized cells of the taste bud and gastrointestinal tract, as well as in pancreatic ß-cells. Well established as a critical signaling protein for G protein-coupled receptor-mediated taste pathways, TRPM5 also has recently been implicated as a regulator of incretin and insulin secretion. To date, no inhibitors of practical use have been described that could facilitate investigation of TRPM5 functions in taste or secretion of metabolic hormones. Using recombinant TRPM5-expressing cells in a fluorescence imaging plate reader-based membrane potential assay, we identified triphenylphosphine oxide (TPPO) as a selective and potent inhibitor of TRPM5. TPPO inhibited both human (IC50 = 12 µM) and murine TRPM5 (IC50 = 30 µM) heterologously expressed in HEK293 cells, but had no effect (up to 100 µM) on the membrane potential responses of TRPA1, TRPV1, or TRPM4b. TPPO also inhibited a calcium-gated TRPM5-dependent conductance in taste cells isolated from the tongues of transgenic TRPM5(+/)⁻ mice. In contrast, TPP had no effect on TRPM5 responses, indicating a strict requirement of the oxygen atom for activity. Sixteen additional TPPO derivatives also inhibited TRPM5 but none more potently than TPPO. Structure-activity relationship of tested compounds was used for molecular modeling-based analysis to clarify the positive and negative structural contributions to the potency of TPPO and its derivatives. TPPO is the most potent TRPM5 inhibitor described to date and is the first demonstrated to exhibit selectivity over other channels.


Assuntos
Compostos Organofosforados/farmacologia , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Medições Luminescentes , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Compostos Organofosforados/química , Técnicas de Patch-Clamp , Relação Estrutura-Atividade , Canais de Cátion TRPM/genética , Paladar , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/fisiologia
3.
Dev Neurobiol ; 67(13): 1687-98, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17587220

RESUMO

Neurotrophin activation of Trk receptors elicits diverse effects on neuronal survival, differentiation, and synaptic plasticity. One of the central questions is how specificity is encoded in neurotrophin receptor signaling and actions. A unique downstream protein is the Ankyrin-Repeat Rich Membrane Spanning (ARMS)/Kinase D-interacting substrate-220 kDa (Kidins220), a very abundant scaffold protein in the hippocampus. To determine the roles of ARMS/Kidins220 in hippocampal neurons, we have analyzed the effects of synaptic activity upon the regulation and distribution of ARMS/Kidins220. At early times in vitro (<7 DIV), synaptic activity was low and ARMS/Kidins220 levels were high. As synaptic activity and markers for synapse maturation, such as PSD-95, increased, ARMS/Kidins220 significantly decreased to a plateau by later times in vitro (>12 DIV). Immunocytochemistry showed ARMS/Kidins220 to be concentrated at the tips of growing processes in immature cultures, and more diffusely distributed in older cultures. To examine the apparent inverse relationship between activity and ARMS/Kidins220 levels, neuronal firing was manipulated pharmacologically. Chronic exposure to TTX increased ARMS/Kidins220 levels, whereas bicuculline caused the opposite effect. Moreover, using shRNA to decrease ARMS/Kidins220 levels produced a corresponding increase in synaptic activity. We find that ARMS/Kidins220 may function in neuronal development as an indicator and potentially as a homeostatic regulator of overall synaptic strength in hippocampal neurons.


Assuntos
Hipocampo/embriologia , Proteínas de Membrana/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fosfoproteínas/metabolismo , Sinapses/metabolismo , Animais , Western Blotting , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Células PC12 , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA