Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 186(7): 1432-1447.e17, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001503

RESUMO

Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.


Assuntos
Melanoma , Linfócitos T , Camundongos , Animais , Linfócitos T/patologia , Neutrófilos/patologia , Deriva e Deslocamento Antigênicos , Imunoterapia , Antígeno CTLA-4
2.
Immunity ; 44(1): 179-193, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789923

RESUMO

Current approaches to cancer immunotherapy aim to engage the natural T cell response against tumors. One limitation is the elimination of self-antigen-specific T cells from the immune repertoire. Using a system in which precursor frequency can be manipulated in a murine melanoma model, we demonstrated that the clonal abundance of CD4(+) T cells specific for self-tumor antigen positively correlated with antitumor efficacy. At elevated precursor frequencies, intraclonal competition impaired initial activation and overall expansion of the tumor-specific CD4(+) T cell population. However, through clonally derived help, this population acquired a polyfunctional effector phenotype and antitumor immunity was enhanced. Conversely, development of effector function was attenuated at low precursor frequencies due to irreversible T cell exhaustion. Our findings assert that the differential effects of T cell clonal abundance on phenotypic outcome should be considered during the design of adoptive T cell therapies, including use of engineered T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Melanoma Experimental/imunologia , Evasão Tumoral/imunologia , Transferência Adotiva , Animais , Separação Celular , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Hum Mol Genet ; 23(6): 1413-24, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24154542

RESUMO

Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct genetic forms of ALS has not been investigated in vivo. To address this question, we crossed SOD1 (wild-type SOD1(WT) and mutant SOD1(G93A)) or TDP43 (mutant TDP43(A315T)) transgenic mice with mice expressing the fluorescent protein Dendra targeted to mitochondria in neurons (mitoDendra). At different time points during the disease course, we studied mitochondrial transport in the intact sciatic nerve of living mice and analyzed axonal mitochondrial morphology at multiple sites, spanning from the spinal cord to the motor terminals. Defects of retrograde mitochondrial transport were detected at 45 days of age, before the onset of symptoms, in SOD1(G93A) and TDP43(A315T) mice, but not in SOD1(WT). At later disease stages, also anterograde mitochondrial transport was affected in both mutant mouse lines. In SOD1(G93A) mice, mitochondrial morphological abnormalities were apparent at 15 days of age, thus preceding transport abnormalities. Conversely, in TDP43(A315T) mice, morphological abnormalities appeared after the onset of transport defects. Taken together, these findings demonstrate that neuronal mitochondrial transport and morphology abnormalities occur in vivo and that they are common denominators of different genetic forms of the ALS. At the same time, differences in the temporal and spatial manifestation of mitochondrial abnormalities between the two mouse models of familial ALS imply that different molecular mechanisms may be involved.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas de Ligação a DNA/genética , Mitocôndrias/patologia , Neurônios/patologia , Nervo Isquiático/fisiopatologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
4.
Mol Cancer Ther ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648067

RESUMO

We recently reported that resistance to PD-1-blockade in a refractory lung cancer-derived model involved increased collagen deposition and the collagen-binding inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), and thus we hypothesized that LAIR1 and collagen cooperated to suppress therapeutic response. Here, we report LAIR1 is associated with tumor stroma and is highly expressed by intratumoral myeloid cells in both human tumors and mouse models of cancer. Stroma-associated myeloid cells exhibit a suppressive phenotype and correlate with LAIR1 expression in human cancer. NGM438, a novel humanized LAIR1 antagonist monoclonal antibody, elicits myeloid inflammation and allogeneic T cell responses by binding to LAIR1 and blocking collagen engagement. Further, a mouse-reactive NGM438 surrogate antibody sensitized refractory KP mouse lung tumors to anti-PD-1 therapy and resulted in increased intratumoral CD8+ T cell content and inflammatory gene expression. These data place LAIR1 at the intersection of stroma and suppressive myeloid cells and support the notion that blockade of the LAIR1/collagen axis can potentially address resistance to checkpoint inhibitor therapy in the clinic.

5.
J Neurosci ; 31(44): 15826-37, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22049426

RESUMO

Mutations in Cu,Zn superoxide dismutase (SOD1) are associated with familial amyotrophic lateral sclerosis (ALS). Mutant SOD1 causes a complex array of pathological events, through toxic gain of function mechanisms, leading to selective motor neuron degeneration. Mitochondrial dysfunction is among the well established toxic effects of mutant SOD1, but its mechanisms are just starting to be elucidated. A portion of mutant SOD1 is localized in mitochondria, where it accumulates mostly on the outer membrane and inside the intermembrane space (IMS). Evidence in cultured cells suggests that mutant SOD1 in the IMS causes mitochondrial dysfunction and compromises cell viability. Therefore, to test its pathogenic role in vivo we generated transgenic mice expressing G93A mutant or wild-type (WT) human SOD1 targeted selectively to the mitochondrial IMS (mito-SOD1). We show that mito-SOD1 is correctly localized in the IMS, where it oligomerizes and acquires enzymatic activity. Mito-G93ASOD1 mice, but not mito-WTSOD1 mice, develop a progressive disease characterized by body weight loss, muscle weakness, brain atrophy, and motor impairment, which is more severe in females. These symptoms are associated with reduced spinal motor neuron counts and impaired mitochondrial bioenergetics, characterized by decreased cytochrome oxidase activity and defective calcium handling. However, there is no evidence of muscle denervation, a cardinal pathological feature of ALS. Together, our findings indicate that mutant SOD1 in the mitochondrial IMS causes mitochondrial dysfunction and neurodegeneration, but per se it is not sufficient to cause a full-fledged ALS phenotype, which requires the participation of mutant SOD1 localized in other cellular compartments.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/ultraestrutura , Mitocôndrias , Mutação/genética , Medula Espinal/ultraestrutura , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Análise de Variância , Animais , Peso Corporal/genética , Encéfalo/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/genética , Coração , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/patologia , Miocárdio/patologia , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
6.
Sci Immunol ; 6(58)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837124

RESUMO

Although radiotherapy has been used for over a century to locally control tumor growth, alone it rarely induces an abscopal response or systemic antitumor immunity capable of inhibiting distal tumors outside of the irradiation field. Results from recent studies suggest that combining immune checkpoint blockades to radiotherapy may enhance abscopal activity. However, the treatment conditions and underlying immune mechanisms that consistently drive an abscopal response during radiation therapy combinations remain unknown. Here, we analyzed the antitumor responses at primary and distal tumor sites, demonstrating that the timing of αPD-1 antibody administration relative to radiotherapy determined the potency of the induced abscopal response. Blockade of the PD-1 pathway after local tumor irradiation resulted in the expansion of polyfunctional intratumoral CD8+ T cells, a decrease in intratumoral dysfunctional CD8+ T cells, expansion of reprogrammable CD8+ T cells, and induction of potent abscopal responses. However, administration of αPD-1 before irradiation almost completely abrogated systemic immunity, which associated with increased radiosensitivity and death of CD8+ T cells. The subsequent reduction of polyfunctional effector CD8+ T cells at the irradiated tumor site generated a suboptimal systemic antitumor response and the loss of abscopal responses. Therefore, this report maximizes the potential synergy between radiotherapy and αPD-1 immunotherapy, information that will benefit clinical combinations of radiotherapy and immune checkpoint blockade.


Assuntos
Quimiorradioterapia/métodos , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Esquema de Medicação , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Neoplasias/imunologia , Cultura Primária de Células , Radiocirurgia , Fatores de Tempo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
7.
Cancer Immunol Res ; 2(8): 812-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24844912

RESUMO

Evaluation of myeloid-derived suppressor cells (MDSC), a cell type implicated in T-cell suppression, may inform immune status. However, a uniform methodology is necessary for prospective testing as a biomarker. We report the use of a computational algorithm-driven analysis of whole blood and cryopreserved samples for monocytic MDSC (m-MDSC) quantity that removes variables related to blood processing and user definitions. Applying these methods to samples from patients with melanoma identifies differing frequency distribution of m-MDSC relative to that in healthy donors. Patients with a pretreatment m-MDSC frequency outside a preliminary definition of healthy donor range (<14.9%) were significantly more likely to achieve prolonged overall survival following treatment with ipilimumab, an antibody that promotes T-cell activation and proliferation. m-MDSC frequencies were inversely correlated with peripheral CD8(+) T-cell expansion following ipilimumab. Algorithm-driven analysis may enable not only development of a novel pretreatment biomarker for ipilimumab therapy, but also prospective validation of peripheral blood m-MDSCs as a biomarker in multiple disease settings.


Assuntos
Algoritmos , Melanoma/imunologia , Células Mieloides/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Feminino , Antígenos HLA-DR/imunologia , Humanos , Ipilimumab , Receptores de Lipopolissacarídeos/imunologia , Masculino , Melanoma/tratamento farmacológico , Pessoa de Meia-Idade
8.
Cancer Res ; 72(4): 876-86, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22174368

RESUMO

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of cells that accumulate during tumor formation, facilitate immune escape, and enable tumor progression. MDSCs are important contributors to the development of an immunosuppressive tumor microenvironment that blocks the action of cytotoxic antitumor T effector cells. Heterogeneity in these cells poses a significant barrier to studying the in vivo contributions of individual MDSC subtypes. Herein, we show that granulocyte-macrophage colony stimulating factor, a cytokine critical for the numeric and functional development of MDSC populations, promotes expansion of a monocyte-derived MDSC population characterized by expression of CD11b and the chemokine receptor CCR2. Using a toxin-mediated ablation strategy to target CCR2-expressing cells, we show that these monocytic MDSCs regulate entry of activated CD8 T cells into the tumor site, thereby limiting the efficacy of immunotherapy. Our results argue that therapeutic targeting of monocytic MDSCs would enhance outcomes in immunotherapy.


Assuntos
Tolerância Imunológica , Melanoma/imunologia , Células Mieloides/imunologia , Receptores CCR2/metabolismo , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Animais , Antígeno CD11b/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Tolerância Imunológica/imunologia , Ativação Linfocitária , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA