Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 60(9): 6536-6549, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33843234

RESUMO

Two new mononuclear Fe(II) polymorphs, [(C2H5)4N]2[Fe(py3C-OEt)(NCS)3]2 (1) and [(C2H5)4N][Fe(py3C-OEt)(NCS)3] (2) (py3C-OEt = tris(pyridin-2-yl)ethoxymethane), have been synthesized and characterized by single-crystal X-ray diffraction, by magnetic and photomagnetic measurements, and by detailed variable-temperature infrared spectroscopy. The molecular structure, in both complexes, is composed of the same anionic [Fe(py3C-OEt)(NCS)3]- complex (two units for 1 and one unit for 2) generated by coordination to the Fe(II) metal center of one tridentate py3C-OEt tripodal ligand and three terminal κN-SCN coligands. Magnetic studies revealed that polymorph 2 displays a high-spin (HS) state over the entire studied temperature range (300-10 K), while complex 1 exhibits an abrupt and complete spin crossover (SCO) transition at ca. 132.3 K, the structural characterizations of which, performed at 295 and 100 K, show a strong modification, resulting from the thermal evolutions of the Fe-N bond lengths and of the distortion parameters (∑ and Θ) of the FeN6 coordination sphere, in agreement with the presence of HS and low-spin (LS) states at 295 and 100 K, respectively. This thermal transition has been also confirmed by the thermal evolution of the maximum absorbance for ν(NCS) vibrational bands recorded in the temperature range 200-10 K. In 1 the signature of a metastable photoinduced HS state has been observed using photomagnetic and photoinfrared spectroscopy, leading to a similar T(LIESST) relaxation temperature (LIESST = light-induced excited spin-state trapping) of 70 K.

2.
Langmuir ; 30(15): 4501-8, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24673288

RESUMO

Localized "electroclick" was achieved on azido-terminated self-assembled monolayers using Scanning Electrochemical Microscopy (SECM) in feedback mode, in which the substrate is not electrically connected (unbiased conditions). The method allows both the local immobilization of diverse functional moieties and the monitoring of each modification step at a micrometer scale. Conditions of the "click" coupling reaction were optimized especially to avoid the deposit of metallic copper by the choice of a specific ligand to stabilize the Cu(I) species. The catalytic efficiency in localized "electroclick" reaction of Cu(II)TMPA (TMPA: tris(2-pyridylmethyl)amine) as the "click" catalyst was compared with a derivative containing an alkyne group Cu(II)6eTMPA, the same molecule playing the role of the catalyst and the substrate. Evidences for surface self-catalysis propagation are demonstrated through SECM imaging showing a random 2D progression of the catalytic modification.


Assuntos
Microscopia/métodos , Catálise
3.
Chemistry ; 18(2): 594-602, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22162129

RESUMO

A novel and general strategy for the immobilisation of functional objects onto electrodes is described. The concept is based on the addition of two pendant ethynyl groups onto a bis(pyridyl)amine derivative, which acts as a molecular platform. This platform is pre-functionalised with an N(3)-tagged object of interest by Huisgen cycloaddition to one of the ethynyl groups in biphasic conditions. Hence, when complexed by Cu(II) , this molecular-object holder can be immobilised, by a "self-induced electroclick", through the second ethynyl group onto N(3)-alkanethiol self-assembled monolayers on a gold electrode. Two different functional groups, a redox innocent ((CH(2))(3)-Ph) and an electrochemical probe (ferrocene), were immobilised by following this strategy. The in situ electrochemical grafting showed, for both systems, that the kinetics of immobilisation is fast. The voltammetric characterisation of the surface-tagged functionalised copper complexes indicated that a good surface coverage was achieved and that a moderately fast electron-transfer reaction occurs. Remarkably, in the case of the redox-active ferrocenyl-immobilised system, the electrochemical response highlighted the involvement of the copper ion of the platform in the kinetics of the electron transfer to the ferrocene moiety. This platform is a promising candidate for applications in surface addressing in areas as diverse as biology and materials.


Assuntos
Complexos de Coordenação/química , Cobre/química , Técnicas Eletroquímicas/instrumentação , Compostos Ferrosos/química , Ciclização , Eletrodos , Ouro/química , Cinética , Metalocenos , Compostos de Sulfidrila/química , Propriedades de Superfície
4.
Inorg Chem ; 49(20): 9358-68, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20849107

RESUMO

A new iron(II) chain of formula [Fe(abpt)(2)(tcpd)] [1; (tcpd)(2-) = [C(10)N(6)](2-) = (C[C(CN)(2)](3))(2-) = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide anion, abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole] has been synthesized and characterized by IR spectroscopy, detailed variable-temperature single-crystal X-ray diffraction, magnetic and photomagnetic measurements. The crystal structure determination of 1 reveals a one-dimensional structural architecture in which the (tcpd)(2-) cyanocarbanion acts as a µ(2)-bridging ligand and the two abpt molecules act as chelating ligands. Detailed X-ray diffraction studies as a function of the temperature (293-10 K) showed a strong modification of the iron coordination sphere, whose characteristics are in agreement with the presence of a spin-crossover transition from high spin (HS) to low spin (LS) in 1. The average Fe-N distances at room temperature, at 10 K following a flash cooling, and at 10 K after subsequent HS-to-LS relaxation are in the range expected for 100%, 50%, and 25% fractions of HS Fe(II), respectively. These observations are consistent with the presence of ca. 25% residual HS species at low temperatures, as derived from the magnetic data. The signature of a photoinduced metastable HS state in 1 has been detected by performing coupled photomagnetic and photocrystallographic analyses. The limiting T(LIESST) value associated with the light-induced excited-spin-state trapping effect was derived as 35 K, in good agreement with the thermal dependence of the unit cell volume upon irradiation. Kinetic studies governing the photoinduced HS/LS process have been recorded at different temperatures; a reverse-LIESST effect has been evidenced at 10 K as a reduction of the residual HS fraction by irradiating the sample at 830 nm.

5.
J Am Chem Soc ; 131(49): 17800-7, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19916497

RESUMO

The control of metal-ligand exchange in a confined environment is of primary importance for understanding thermodynamics and kinetics of the electron transfer process governing the reactivity of enzymes. This study reveals an unprecedented change of the Cu(II)/Cu(I) binding and redox properties through a subtle control of the access to the labile site by a protein channel mimic. The cavity effect was estimated from cyclic voltammetry investigations by comparison of two complexes displaying the same coordination sphere (tmpa) and differing by the presence or absence of a calix[6]arene cone surrounding the metal labile site L. Effects on thermodynamics are illustrated by important shifts of E(1/2) toward higher values for the calix complexes. This is ascribable to the protection of the labile site of the open-shell system from the polar medium. Such a cavity control also generates specific stabilizations. This is exemplified by an impressively exalted affinity of the calixarene system for MeCN, and by the detection of a kinetic intermediate, a noncoordinated DMF guest molecule floating inside the cone. Kinetically, a unique dissymmetry between the Cu(I) and Cu(II) ligand exchange capacity is highlighted. At the CV time scale, the guest interconversion is only feasible after reduction of Cu(II) to Cu(I). Such a redox-switch mechanism results from the blocking of the associative process at the Cu(II) state, imposed by the calixarene funnel. All of this suggests that the embedment of a reactive redox metal ion in a funnel-like cavity can play a crucial role in catalysis, particularly for metallo-enzymes associating electron transfer and ligand exchange.


Assuntos
Cobre/química , Compostos Organometálicos/química , Proteínas/química , Cinética , Ligantes , Mimetismo Molecular , Oxirredução , Termodinâmica
6.
Dalton Trans ; 43(17): 6436-45, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619011

RESUMO

The coordination properties of the biomimetic complex [Cu(TMPA)(H2O)](CF3SO3)2 (TMPA = tris(2-pyridylmethyl)amine) have been investigated by electrochemistry combined with UV-Vis and EPR spectroscopy in different non-coordinating media including imidazolium-based room-temperature ionic liquids, for different water contents. The solid-state X-ray diffraction analysis of the complex shows that the cupric centre lies in a N4O coordination environment with a nearly perfect trigonal bipyramidal geometry (TBP), the water ligand being axially coordinated to Cu(II). In solution, the coordination geometry of the complex remains TBP in all media. Neither the triflate ion nor the anions of the ionic liquids were found to coordinate the copper centre. Cyclic voltammetry in all media shows that the decoordination of the water molecule occurs upon monoelectronic reduction of the Cu(II) complex. Back-coordination of the water ligand at the cuprous state can be detected by increasing the water content and/or decreasing the timescale of the experiment. Numerical simulations of the voltammograms allow the determination of kinetics and thermodynamics for the water association-dissociation mechanism. The resulting data suggest that (i) the binding/unbinding of water at the Cu(I) redox state is relatively slow and equilibrated in all media, and (ii) the binding of water at Cu(I) is somewhat faster in the ionic liquids than in the non-coordinating solvents, while the decoordination process is weakly sensitive to the nature of the solvents. These results suggest that ionic liquids favour water exchange without interfering with the coordination sphere of the metal centre. This makes them promising media for studying host-guest reactions with biomimetic complexes.


Assuntos
Complexos de Coordenação/química , Cobre/química , Água/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Técnicas Eletroquímicas , Transporte de Elétrons , Elétrons , Líquidos Iônicos/síntese química , Líquidos Iônicos/química , Cinética , Conformação Molecular , Oxirredução , Termodinâmica
7.
Dalton Trans ; 42(6): 2238-53, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23104234

RESUMO

New dinucleating ligands based on two tripodal tris(2-pyridylmethyl)amine (TMPA) units linked by a series of delocalized π-electrons spacers have been synthesized. Their di-Cu(II) complexes have been prepared and structurally characterized. As compared to the corresponding monotopic complexes, these dinuclear Cu(II) complexes reveal spectroscopic and voltammetric features ascribable to weakly perturbed electronic interactions. In the case of the anthracenyl spacer, observation both in the solid and in solution suggests that the existence of intramolecular π-π stacking interactions influences the geometry of the complex and hence its electronic properties. The bis-Cu(I) complexes were prepared electrochemically. In the specific case of the complex bearing a mono-alkyne spacer, addition of dioxygen in acetonitrile leads to the slow formation of a trans-µ-1,2 peroxo Cu(2) complex which shows good stability at 268 K (t(1/2) = 240 s). Analysis of the kinetics of the peroxo formation by UV-vis spectroscopy suggests that the increased activation barrier for intramolecular binding of dioxygen is due to the rigidity of the spacer.


Assuntos
Complexos de Coordenação/química , Cobre/química , Oxigênio/química , Piridinas/química , Acetonitrilas/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Técnicas Eletroquímicas , Cinética , Conformação Molecular
8.
Dalton Trans ; 39(48): 11516-8, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21049097

RESUMO

We report the self-induced "electroclick" immobilization of the [Cu(II)(6-ethynyl-TMPA)(H(2)O)](2+) complex, by its simple electro-reduction, onto a mixed azidoundodecane-/decane-thiol modified gold electrode. The redox response of the grafted [Cu(II/I)(TMPA)] at the modified electrode is fully reversible indicating no Cu coordination change and a fast electron transfer.


Assuntos
Complexos de Coordenação/química , Cobre/química , Ouro/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Eletrodos , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Conformação Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA