Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 30(4): 1416-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26655706

RESUMO

Exosomes are secreted nanovesicles that are able to transfer RNA and proteins to target cells. The emerging role of mesenchymal stem cell (MSC) exosomes as promoters of aerobic ATP synthesis restoration in damaged cells, prompted us to assess whether they contain an extramitochondrial aerobic respiration capacity. Exosomes were isolated from culture medium of human MSCs from umbilical cord of ≥37-wk-old newborns or between 28- to 30-wk-old newborns (i.e.,term or preterm infants). Characterization of samples was conducted by cytofluorometry. Oxidative phosphorylation capacity was assessed by Western blot analysis, oximetry, and luminometric and fluorometric analyses. MSC exosomes express functional respiratory complexes I, IV, and V, consuming oxygen. ATP synthesis was only detectable in exosomes from term newborns, suggestive of a specific mechanism that is not completed at an early gestational age. Activities are outward facing and comparable to those detected in mitochondria isolated from term MSCs. MSC exosomes display an unsuspected aerobic respiratory ability independent of whole mitochondria. This may be relevant for their ability to rescue cell bioenergetics. The differential oxidative metabolism of pretermvs.term exosomes sheds new light on the preterm newborn's clinical vulnerability. A reduced ability to repair damaged tissue and an increased capability to cope with anoxic environment for preterm infants can be envisaged.-Panfoli, I., Ravera, S., Podestà, M., Cossu, C., Santucci, L., Bartolucci, M., Bruschi, M., Calzia, D., Sabatini, F., Bruschettini, M., Ramenghi, L. A., Romantsik, O., Marimpietri, D., Pistoia, V., Ghiggeri, G., Frassoni, F., Candiano, G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.


Assuntos
Metabolismo Energético , Exossomos/metabolismo , Recém-Nascido Prematuro/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nascimento a Termo/metabolismo , Trifosfato de Adenosina/biossíntese , Western Blotting , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Recém-Nascido , Recém-Nascido Prematuro/sangue , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Oximetria , Consumo de Oxigênio , Nascimento a Termo/sangue
2.
Br J Pharmacol ; 176(11): 1764-1779, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825185

RESUMO

BACKGROUND AND PURPOSE: Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease that originates from the defective function of the CF transmembrane conductance regulator (CFTR) protein, a cAMP-dependent anion channel involved in fluid transport across epithelium. Because small synthetic transmembrane anion transporters (anionophores) can replace the biological anion transport mechanisms, independent of genetic mutations in the CFTR, such anionophores are candidates as new potential treatments for CF. EXPERIMENTAL APPROACH: In order to assess their effects on cell physiology, we have analysed the transport properties of five anionophore compounds, three prodigiosines and two tambjamines. Chloride efflux was measured in large uni-lamellar vesicles and in HEK293 cells with chloride-sensitive electrodes. Iodide influx was evaluated in FRT cells transfected with iodide-sensitive YFP. Transport of bicarbonate was assessed by changes of pH after a NH4 + pre-pulse using the BCECF fluorescent probe. Assays were also carried out in FRT cells permanently transfected with wild type and mutant human CFTR. KEY RESULTS: All studied compounds are capable of transporting halides and bicarbonate across the cell membrane, with a higher transport capacity at acidic pH. Interestingly, the presence of these anionophores did not interfere with the activation of CFTR and did not modify the action of lumacaftor (a CFTR corrector) or ivacaftor (a CFTR potentiator). CONCLUSION AND IMPLICATIONS: These anionophores, at low concentrations, transported chloride and bicarbonate across cell membranes, without affecting CFTR function. They therefore provide promising starting points for the development of novel treatments for CF.


Assuntos
Bicarbonatos/metabolismo , Cloretos/metabolismo , Ionóforos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Interações Medicamentosas , Humanos , Concentração de Íons de Hidrogênio , Iodetos/metabolismo , Transporte de Íons , Potenciais da Membrana/efeitos dos fármacos , Ratos
3.
Front Pharmacol ; 9: 852, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131695

RESUMO

Cystic fibrosis (CF) is a genetic lethal disease, originated from the defective function of the CFTR protein, a chloride and bicarbonate permeable transmembrane channel. CF mutations affect CFTR protein through a variety of molecular mechanisms which result in different functional defects. Current therapeutic approaches are targeted to specific groups of patients that share a common functional defect. We seek to develop an innovative therapeutic approach for the treatment of CF using anionophores, small molecules that facilitate the transmembrane transport of anions. We have characterized the anion transport mechanism of a synthetic molecule based on the structure of prodigiosine, a red pigment produced by bacteria. Anionophore-driven chloride efflux from large unilamellar vesicles is consistent with activity of an uniporter carrier that facilitates the transport of anions through lipid membranes down the electrochemical gradient. There are no evidences of transport coupling with protons. The selectivity sequence of the prodigiosin inspired EH160 ionophore is formate > acetate > nitrate > chloride > bicarbonate. Sulfate, phosphate, aspartate, isothionate, and gluconate are not significantly transported by these anionophores. Protonation at acidic pH is important for the transport capacity of the anionophore. This prodigiosin derived ionophore induces anion transport in living cells. Its low toxicity and capacity to transport chloride and bicarbonate, when applied at low concentration, constitute a promising starting point for the development of drug candidates for CF therapy.

4.
Sci Rep ; 8(1): 2608, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422673

RESUMO

Anion selective ionophores, anionophores, are small molecules capable of facilitating the transmembrane transport of anions. Inspired in the structure of natural product prodigiosin, four novel anionophores 1a-d, including a 1,2,3-triazole group, were prepared. These compounds proved highly efficient anion exchangers in model phospholipid liposomes. The changes in the hydrogen bond cleft modified the anion transport selectivity exhibited by these compounds compared to prodigiosin and suppressed the characteristic high toxicity of the natural product. Their activity as anionophores in living cells was studied and chloride efflux and iodine influx from living cells mediated by these derivatives was demonstrated. These compounds were shown to permeabilize cellular membranes to halides with efficiencies close to the natural anion channel CFTR at doses that do not compromise cellular viability. Remarkably, optimal transport efficiency was measured in the presence of pH gradients mimicking those found in the airway epithelia of Cystic Fibrosis patients. These results support the viability of developing small molecule anionophores as anion channel protein surrogates with potential applications in the treatment of conditions such as Cystic Fibrosis derived from the malfunction of natural anion transport mechanisms.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Ionóforos/farmacologia , Animais , Ânions/metabolismo , Membrana Celular/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Ionóforos/síntese química , Ionóforos/química , Prodigiosina/química , Células Tumorais Cultivadas
5.
PLoS One ; 10(9): e0138680, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26417990

RESUMO

BACKGROUND: Cord blood contains high number of hematopoietic cells that after birth disappear. In this paper we have studied the functional properties of the umbilical cord blood progenitor cells collected from term and preterm neonates to establish whether quantitative and/or qualitative differences exist between the two groups. METHODS AND RESULTS: Our results indicate that the percentage of total CD34+ cells was significantly higher in preterm infants compared to full term: 0.61% (range 0.15-4.8) vs 0.3% (0.032-2.23) p = 0.0001 and in neonates <32 weeks of gestational age (GA) compared to those ≥32 wks GA: 0.95% (range 0.18-4.8) and 0.36% (0.15-3.2) respectively p = 0.0025. The majority of CD34+ cells co-expressed CD71 antigen (p<0.05 preterm vs term) and grew in vitro large BFU-E, mostly in the second generation. The subpopulations CD34+CD38- and CD34+CD45- resulted more represented in preterm samples compared to term, conversely, Side Population (SP) did not show any difference between the two group. The absolute number of preterm colonies (CFCs/10microL) resulted higher compared to term (p = 0.004) and these progenitors were able to grow until the third generation maintaining an higher proportion of CD34+ cells (p = 0.0017). The number of colony also inversely correlated with the gestational age (Pearson r = -0.3001 p<0.0168). CONCLUSIONS: We found no differences in the isolation and expansion capacity of Endothelial Colony Forming Cells (ECFCs) from cord blood of term and preterm neonates: both groups grew in vitro large number of endothelial cells until the third generation and showed a transitional phenotype between mesenchymal stem cells and endothelial progenitors (CD73, CD31, CD34 and CD144)The presence, in the cord blood of preterm babies, of high number of immature hematopoietic progenitors and endothelial/mesenchymal stem cells with high proliferative potential makes this tissue an important source of cells for developing new cells therapies.


Assuntos
Aldeído Desidrogenase/metabolismo , Células Endoteliais/citologia , Células Precursoras Eritroides/citologia , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Contagem de Células Sanguíneas , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro/sangue , Gravidez , Nascimento Prematuro/sangue , Receptores da Transferrina/metabolismo , Nascimento a Termo/sangue
6.
Cell Oncol ; 32(1-2): 77-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20208136

RESUMO

BACKGROUND: The Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166), involved in nervous system development, has been linked to tumor progression and metastasis in several tumors. No information is available on ALCAM expression in neuroblastoma, a childhood neoplasia originating from the sympathetic nervous system. METHODS: ALCAM expression was analysed by immunofluorescence and immunohistochemistry on differentiated neuroblastoma cell lines and on archival specimens of stroma-poor, not MYCN amplified, resectable neuroblastoma tumors, respectively. RESULTS: ALCAM is variously expressed in neuroblastoma cell lines, is shed by metalloproteases and is cleaved by ADAM17/TACE in vitro. ALCAM is expressed in neuroblastoma primary tumors with diverse patterns of subcellular localization and is highly expressed in the neuropil area in a subgroup of cases. Tumor specimens showing high expression of ALCAM at the membrane of the neuroblast body or low levels in the neuropil area are associated with relapse (P=0.044 and P<0.0001, respectively). In vitro differentiated neuroblastoma cells show strong ALCAM expression on neurites, suggesting that ALCAM expression in the neuropil is related to a differentiated phenotype. CONCLUSION: Assessment of ALCAM localization by immunohistochemistry may help to identify patients who, in the absence of negative prognostic factors, are at risk of relapse and require a more careful follow-up.


Assuntos
Molécula de Adesão de Leucócito Ativado/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Humanos , Recidiva Local de Neoplasia , Neurópilo/metabolismo , Transporte Proteico , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA