Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Pharm ; 18(9): 3401-3417, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34482696

RESUMO

The need of pharmacological strategies to preclude breast cancer development motivated us to develop a non-aqueous microemulsion (ME) capable of forming a depot after administration in the mammary tissue and uptake of interstitial fluids for prolonged release of the retinoid fenretinide. The selected ME was composed of phosphatidylcholine/tricaprylin/propylene glycol (45:5:50, w/w/w) and presented a droplet diameter of 175.3 ± 8.9 nm. Upon water uptake, the ME transformed successively into a lamellar phase, gel, and a lamellar phase-containing emulsion in vitro as the water content increased and released 30% of fenretinide in vitro after 9 days. Consistent with the slow release, the ME formed a depot in cell cultures and increased fenretinide IC50 values by 68.3- and 13.2-fold in MCF-7 and T-47D cells compared to a solution, respectively. At non-cytotoxic concentrations, the ME reduced T-47D cell migration by 75.9% and spheroid growth, resulting in ∼30% smaller structures. The depot formed in vivo prolonged a fluorochrome release for 30 days without producing any sings of local irritation. In a preclinical model of chemically induced carcinogenesis, ME administration every 3 weeks for 3 months significantly reduced (4.7-fold) the incidence of breast tumors and increased type II collagen expression, which might contribute to limit spreading. These promising results support the potential ME applicability as a preventive therapy of breast cancer.


Assuntos
Anticarcinógenos/administração & dosagem , Neoplasias da Mama/prevenção & controle , Fenretinida/administração & dosagem , Neoplasias Mamárias Experimentais/prevenção & controle , Animais , Anticarcinógenos/farmacocinética , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Emulsões , Feminino , Fenretinida/farmacocinética , Humanos , Concentração Inibidora 50 , Células MCF-7 , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Metilnitrosoureia/administração & dosagem , Metilnitrosoureia/toxicidade , Camundongos , Ratos
2.
Am J Physiol Heart Circ Physiol ; 317(1): H87-H96, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050559

RESUMO

Impairment of the myogenic response can affect capillary hydrostatic pressure and contribute to peripheral edema and exercise intolerance, which are markers of heart failure (HF). The aim of this study was to assess the effects of exercise training (ET) on myogenic response in skeletal muscle resistance arteries and peripheral edema in HF rats, focusing on the potential signaling pathways involved in these adjustments. Male Wistar rats were submitted to either coronary artery occlusion or a sham-operated surgery. After 4 wk, an exercise test was performed, and the rats were divided into the following groups: untrained normal control (UNC) and untrained HF (UHF) and exercise- trained (on treadmill, 50-60% of maximal capacity) NC (TNC) and exercise-trained HF (THF). Caudal tibial artery (CTA) myogenic response was impaired in UHF compared with UNC, and ET restored this response in THF to NC levels and increased it in TNC. Rho kinase (ROCK) inhibitor abolished CTA myogenic response in the untrained and blunted it in exercise-trained groups. CTA-stored calcium (Ca2+) mobilization was higher in exercise-trained rats compared with untrained rats. The paw volume was higher in UHF rats, and ET decreased this response compared with UNC. Myogenic constriction was positively correlated with maximal running distance and negatively correlated with paw volume. The results demonstrate, for the first time, that HF impairs the myogenic response in skeletal muscle arteries, which contributes to peripheral edema in this syndrome. ET restores the myogenic response in skeletal muscle arteries improving Ca2+ sensitization and handling. Additionally, this paradigm also improves peripheral edema and exercise intolerance. NEW & NOTEWORTHY The novel and main finding of the present study is that moderate intensity exercise training restores the impaired myogenic response of skeletal muscle resistance arteries, exercise intolerance and peripheral edema in rats with heart failure. These results also show for the first time to our knowledge that exercise training improving calcium sensitization through the ROCK pathway and enhancing intracellular calcium handling could contribute to restoration of flow autoregulation to skeletal muscle in heart failure.


Assuntos
Edema/terapia , Terapia por Exercício , Tolerância ao Exercício , Insuficiência Cardíaca/terapia , Músculo Esquelético/irrigação sanguínea , Condicionamento Físico Animal , Artérias da Tíbia/fisiopatologia , Resistência Vascular , Vasoconstrição , Animais , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Edema/metabolismo , Edema/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Masculino , Ratos Wistar , Recuperação de Função Fisiológica , Corrida , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Artérias da Tíbia/metabolismo , Quinases Associadas a rho/metabolismo
3.
Am J Physiol Renal Physiol ; 315(3): F460-F468, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717937

RESUMO

Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. We investigate the role of toll-like receptor 4 (TLR4) on voiding dysfunction and inflammation in the cyclophosphamide (CYP)-induced mouse cystitis. Male C57BL/6 [wild-type, (WT)] and/or TLR4 knockout (TLR4-/-) mice were treated with an injection of CYP (300 mg/kg, 24 h) or saline (10 ml/kg). The pharmacological blockade of the TLR4 by resatorvid (10 mg/kg) was also performed 1 h prior CYP-injection in WT mice. Urodynamic profiles were assessed by voiding stain on filter paper and filling cystometry. Contractile responses to carbachol were measured in isolated bladders. In CYP-exposed WT mice, mRNA for TLR4, myeloid differentiation primary response 88, and TIR-domain-containing adapter-inducing interferon-ß increased by 45%, 72%, and 38%, respectively ( P < 0.05). In free-moving mice, CYP-exposed mice exhibited a higher number of urinary spots and smaller urinary volumes. Increases of micturition frequency and nonvoiding contractions, concomitant with decreases of intercontraction intervals and capacity, were observed in the filling cystometry of WT mice ( P < 0.05). Carbachol-induced bladder contractions were significantly reduced in the CYP group, which was paralleled by reduced mRNA for M2 and M3 muscarinic receptors. These functional and molecular alterations induced by CYP were prevented in TLR4-/- and resatorvid-treated mice. Additionally, the increased levels of inflammatory markers induced by CYP exposure, myeloperoxidase activity, interleukin-6, and tumor necrosis factor-alpha were significantly reduced by resatorvid treatment. Our findings reveal a central role for the TLR4 signaling pathway in initiating CYP-induced bladder dysfunction and inflammation and thus emphasize that TLR4 receptor blockade may have clinical value for IC/BPS treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Ciclofosfamida , Cistite Intersticial/prevenção & controle , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/deficiência , Bexiga Urinária/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Cistite Intersticial/induzido quimicamente , Cistite Intersticial/genética , Cistite Intersticial/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Peroxidase/metabolismo , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Micção/efeitos dos fármacos , Urodinâmica/efeitos dos fármacos
4.
Adv Exp Med Biol ; 929: 91-125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27771922

RESUMO

A significant number of experimental and clinical studies published in peer-reviewed journals have demonstrated promising pharmacological properties of capsaicin in relieving signs and symptoms of non-communicable diseases (chronic diseases). This chapter provides an overview made from basic and clinical research studies of the potential therapeutic effects of capsaicin, loaded in different application forms, such as solution and cream, on chronic diseases (e.g. arthritis, chronic pain, functional gastrointestinal disorders and cancer). In addition to the anti-inflammatory and analgesic properties of capsaicin largely recognized via, mainly, interaction with the TRPV1, the effects of capsaicin on different cell signalling pathways will be further discussed here. The analgesic, anti-inflammatory or apoptotic effects of capsaicin show promising results in arthritis, neuropathic pain, gastrointestinal disorders or cancer, since evidence demonstrates that the oral or local application of capsaicin reduce inflammation and pain in rheumatoid arthritis, promotes gastric protection against ulcer and induces apoptosis of the tumour cells. Sadly, these results have been paralleled by conflicting studies, which indicate that high concentrations of capsaicin are likely to evoke deleterious effects, thus suggesting that capsaicin activates different pathways at different concentrations in both human and rodent tissues. Thus, to establish effective capsaicin doses for chronic conditions, which can be benefited from capsaicin therapeutic effects, is a real challenge that must be pursued.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Capsaicina/uso terapêutico , Doença Crônica/tratamento farmacológico , Descoberta de Drogas/métodos , Analgésicos/efeitos adversos , Analgésicos/química , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/química , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/química , Capsaicina/efeitos adversos , Capsaicina/química , Relação Dose-Resposta a Droga , Humanos , Fitoterapia , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos
5.
Nitric Oxide ; 46: 25-31, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25461269

RESUMO

Hydrogen sulfide exerts a number of cytoprotective and anti-inflammatory effects in many organ systems. In an effort to exploit these potent and beneficial effects, a number of hydrogen sulfide-releasing derivatives of existing drugs have been developed and extensively tested in pre-clinical models. In particular, efforts have been made by several groups to develop hydrogen sulfide-releasing derivatives of a number of nonsteroidal anti-inflammatory drugs. The main goal of this approach is to reduce the gastrointestinal ulceration and bleeding caused by this class of drugs, particularly when used chronically such as in the treatment of arthritis. However, these drugs may also have utility for prevention of various types of cancer. This paper provides an overview of some of the mechanisms underlying the anti-inflammatory and cytoprotective actions of hydrogen sulfide. It also gives some examples of hydrogen sulfide-releasing anti-inflammatory drugs, and their actions in terms of reducing inflammation and attenuating the development of cancer in experimental models.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Substâncias Protetoras/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Descoberta de Drogas , Humanos , Sulfeto de Hidrogênio/farmacocinética , Substâncias Protetoras/química , Substâncias Protetoras/farmacocinética
6.
Neuroimmunomodulation ; 22(6): 373-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26088412

RESUMO

OBJECTIVE: intra-articular co-injection of kaolin with carrageenan (CGN) in rodents is widely used as an experimental model of arthritis. However, the ability of kaolin to cause arthritis and related immune responses when administered alone is unclear. We evaluated the contribution of prostanoids and sensory C-fibres (and their neuropeptide substance P) to kaolin-induced inflammation in the rat knee. METHODS: Wistar rats, 8-10 weeks old, received an intra-articular injection of kaolin (1-10 µg/joint) or saline into the knee joint. Knee inflammation, proinflammatory cytokines, pain behaviour and secondary tactile allodynia were assessed over 5 h, when synovial leukocyte counts, histopathological changes and proinflammatory cytokine levels were evaluated. RESULTS: The intra-articular injection of kaolin caused a dose- and time-dependent knee swelling and impairment of motion that were associated with secondary tactile allodynia, elevated concentrations of IL-1ß, IL-6 and TNFα, leukocyte infiltration, and histopathological changes in the ipsilateral hindpaw. The neurokinin-1 (NK1) receptor antagonist SR140333 or neonatal treatment with capsaicin markedly reduced the inflammatory parameters, cytokines and allodynia but failed to significantly inhibit the impaired motion. The cyclo-oxygenase inhibitor indomethacin partially inhibited knee oedema and allodynia but did not affect the leukocyte influx, myeloperoxidase activity or impaired motion in the kaolin-injected rat. CONCLUSIONS: We show the first evidence that intra-articular injection of kaolin without CGN produced severe acute monoarthritis. This was highly dependent on substance P (released from C-fibres) and NK1 receptor activation, which stimulated local production of proinflammatory cytokines. This model may be of critical importance for mechanistic studies and screening new anti-inflammatory/analgesic drugs.


Assuntos
Antidiarreicos/toxicidade , Artrite/induzido quimicamente , Caulim/toxicidade , Receptores da Neurocinina-1/metabolismo , Animais , Animais Recém-Nascidos , Artrite/complicações , Artrite/tratamento farmacológico , Capsaicina/toxicidade , Citocinas/metabolismo , Modelos Animais de Doenças , Edema/etiologia , Inibidores Enzimáticos/uso terapêutico , Hiperalgesia/etiologia , Indometacina/uso terapêutico , Articulação do Joelho/patologia , Masculino , Medição da Dor , Peroxidase/metabolismo , Piperidinas/uso terapêutico , Quinuclidinas/uso terapêutico , Ratos , Ratos Wistar , Líquido Sinovial/metabolismo
7.
Arch Toxicol ; 88(8): 1589-605, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24554396

RESUMO

High diesel exhaust particle levels are associated with increased health effects; however, knowledge on the impact of its chemical contaminant 1,2-naphthoquinone (1,2-NQ) is limited. We investigated whether postnatal and adult exposures to 1,2-NQ influence allergic reaction and the roles of innate and adaptive immunity. Male neonate (6 days) and adult (56 days) C57Bl/6 mice were exposed to 1,2-NQ (100 nM; 15 min) for 3 days, and on day 59, they were sensitized and later challenged with ovalbumin (OVA). Airway hyper-responsiveness (AHR) and production of cytokines, immunoglobulin E (IgE) and leukotriene B4 (LTB4) were measured in the airways. Postnatal exposure to 1,2-NQ activated dendritic cells in splenocytes by increasing expressing cell surface molecules (e.g., CD11c). Co-exposure to OVA effectively polarized T helper (Th) type 2 (Th2) by secreting Th2-mediated cytokines. Re-stimulation with unspecific stimuli (PMA and ionomycin) generated a mixed Th1 (CD4(+)/IFN-γ(+)) and Th17 (CD4(+)/IL-17(+)) phenotype in comparison with the vehicle-matched group. Postnatal exposure to 1,2-NQ did not induce eosinophilia in the airways at adulthood, although it evoked neutrophilia and exacerbated OVA-induced eosinophilia, Th2 cytokines, IgE and LTB4 production without affecting AHR and mast cell degranulation. At adulthood, 1,2-NQ exposure evoked neutrophilia and increased Th1/Th2 cytokine levels, but failed to affect OVA-induced eosinophilia. In conclusion, postnatal exposure to 1,2-NQ increases the susceptibility to antigen-induced asthma. The mechanism appears to be dependent on increased expression of co-stimulatory molecules, which leads to cell presentation amplification, Th2 polarization and enhanced LTB4, humoral response and Th1/Th2 cytokines. These findings may be useful for future investigations on treatments focused on pulmonary illnesses observed in children living in heavy polluted areas.


Assuntos
Envelhecimento/imunologia , Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Naftoquinonas/toxicidade , Pneumonia/induzido quimicamente , Hipersensibilidade Respiratória/induzido quimicamente , Emissões de Veículos/toxicidade , Imunidade Adaptativa/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Citocinas/imunologia , Suscetibilidade a Doenças/induzido quimicamente , Imunidade Inata/efeitos dos fármacos , Imunoglobulina E/imunologia , Exposição por Inalação/análise , Leucotrieno B4/imunologia , Masculino , Ovalbumina/imunologia , Pneumonia/imunologia , Hipersensibilidade Respiratória/imunologia , Emissões de Veículos/análise
8.
Mediators Inflamm ; 2014: 506450, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242870

RESUMO

Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host's defence to malaria. Transient receptor potential vanilloid 1 (TRPV1) modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 10(5) red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80(+)Ly6G(+) cell numbers as well as activation of both F4/80(+)and F4/80(+)Ly6G(+) cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1(+) and natural killer (NK) population, without interfering with natural killer T (NKT) cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNFα and IFNγ, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNFα. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria.


Assuntos
Capsaicina/análogos & derivados , Plasmodium berghei/patogenicidade , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Capsaicina/uso terapêutico , Citometria de Fluxo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/imunologia
9.
Eur J Pharm Sci ; : 106925, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374744

RESUMO

Psoriasis is an immune-mediated chronic inflammatory disease that causes major psychosocial impact. Topical corticosteroids represent the standard pharmacological treatment for mild-to-moderate disease, but their local and systemic adverse effects reinforce the need for treatment innovations. Here we developed lamellar phase-based formulations for topical delivery of a hybrid dexamethasone and hydrogen sulfide (H2S) donor molecule (Dexa-TBZ), aiming to potentiate the effects of the glucocorticoid with H2S. They offer the possibility to obtain precursor formulations free of water that originate lamellar phases upon water addition, preventing drug hydrolysis during storage. Two groups of formulations were developed varying the surfactants and oil phase types and content. Systems containing 20 and 70% of water formed, respectively, bulk lamellar phase and a more fluid formulation consisting of dispersed droplets (< 1000 nm) stabilized by lamellar phase. Both presented pseudoplastic behavior. Dexa-TBZ was incorporated at 1%, remaining stable for 8 h. Drug content decreased to ∼80% after 1 week in precursor formulations free of water, but remained stable after that. Without causing changes to the cutaneous barrier function ex vivo or to the histological structure of the skin in vivo, the formulation containing phosphatidylcholine as surfactant and 70% of water promoted 1.8- and 2.7-fold increases in Dexa-TBZ penetration in the stratum corneum and epidermis+dermis, respectively, compared to a control solution, demonstrating their potential applicability as topical delivery systems.

10.
Front Physiol ; 14: 1055706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441000

RESUMO

Aedes aegypti (Ae. aegypti) saliva induces a variety of anti-inflammatory and immunomodulatory activities. Interestingly, although it is known that mosquito bites cause allergic reactions in sensitised hosts, the primary exposure of humans to Ae. aegypti does not evoke significant itching. Whether active components in the saliva of Ae. aegypti can counteract the normal itch reaction to injury produced by a histaminergic or non-histaminergic pathway in vertebrate hosts is unknown. This study investigated the effects of Ae. aegypti mosquito salivary gland extract (SGE) on sensitive reactions such as itching and associated skin inflammation. Acute pruritus and plasma extravasation were induced in mice by the intradermal injection of either compound 48/80 (C48/80), the Mas-related G protein-coupled receptor (Mrgpr) agonist chloroquine (CQ), or the transient receptor potential ankyrin 1 (TRPA1) agonist allyl isothiocyanate (AITC). The i.d. co-injection of Ae. aegypti SGE inhibited itching, plasma extravasation, and neutrophil influx evoked by C48/80, but it did not significantly affect mast cell degranulation in situ or in vitro. Additionally, SGE partially reduced CQ- and AITC-induced pruritus in vivo, suggesting that SGE affects pruriceptive nerve firing independently of the histaminergic pathway. Activation of TRPA1 significantly increased intracellular Ca2+ in TRPA-1-transfected HEK293t lineage, which was attenuated by SGE addition. We showed for the first time that Ae. aegypti SGE exerts anti-pruriceptive effects, which are partially regulated by the histamine-independent itch TRPA1 pathway. Thus, SGE may possess bioactive molecules with therapeutic potential for treating nonhistaminergic itch.

11.
Biomolecules ; 14(1)2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38254656

RESUMO

The combustion of fossil fuels contributes to air pollution (AP), which was linked to about 8.79 million global deaths in 2018, mainly due to respiratory and cardiovascular-related effects. Among these, particulate air pollution (PM2.5) stands out as a major risk factor for heart health, especially during vulnerable phases. Our prior study showed that premature exposure to 1,2-naphthoquinone (1,2-NQ), a chemical found in diesel exhaust particles (DEP), exacerbated asthma in adulthood. Moreover, increased concentration of 1,2-NQ contributed to airway inflammation triggered by PM2.5, employing neurogenic pathways related to the up-regulation of transient receptor potential vanilloid 1 (TRPV1). However, the potential impact of early-life exposure to 1,2-naphthoquinone (1,2-NQ) on atrial fibrillation (AF) has not yet been investigated. This study aims to investigate how inhaling 1,2-NQ in early life affects the autonomic adrenergic system and the role played by TRPV1 in these heart disturbances. C57Bl/6 neonate male mice were exposed to 1,2-NQ (100 nM) or its vehicle at 6, 8, and 10 days of life. Early exposure to 1,2-NQ impairs adrenergic responses in the right atria without markedly affecting cholinergic responses. ECG analysis revealed altered rhythmicity in young mice, suggesting increased sympathetic nervous system activity. Furthermore, 1,2-NQ affected ß1-adrenergic receptor agonist-mediated positive chronotropism, which was prevented by metoprolol, a ß1 receptor blocker. Capsazepine, a TRPV1 blocker but not a TRPC5 blocker, reversed 1,2-NQ-induced cardiac changes. In conclusion, neonate mice exposure to AP 1,2-NQ results in an elevated risk of developing cardiac adrenergic dysfunction, potentially leading to atrial arrhythmia at a young age.


Assuntos
Poluentes Atmosféricos , Naftoquinonas , Masculino , Animais , Camundongos , Poluentes Atmosféricos/toxicidade , Adrenérgicos , Células Receptoras Sensoriais , Átrios do Coração , Poeira
12.
Front Pharmacol ; 13: 910219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712716

RESUMO

Orofacial pain is one of the commonest and most complex complaints in dentistry, greatly impairing life quality. Preclinical studies using monoterpenes have shown pharmacological potential to treat painful conditions, but the reports of the effects of myrtenol on orofacial pain and inflammation are scarce. The aim of this study was to evaluate the effect of myrtenol in experimental models of orofacial pain and inflammation. Orofacial nociceptive behavior and the immunoreactivity of the phosphorylated p38 (P-p38)-MAPK in trigeminal ganglia (TG) and spinal trigeminal subnucleus caudalis (STSC) were determined after the injection of formalin in the upper lip of male Swiss mice pretreated with myrtenol (12.5 and 25 mg/kg, i.p.) or vehicle. Orofacial inflammation was induced by the injection of carrageenan (CGN) in the masseter muscle of mice pretreated with myrtenol (25 and 50 mg/kg, i.p.) or its vehicle (0.02% Tween 80 in saline). Myeloperoxidase (MPO) activity and histopathological changes in the masseter muscle and interleukin (IL)-1ß levels in the TG and STSC were measured. The increase in face-rubbing behavior time induced by formalin and P-p38-MAPK immunostaining in trigeminal ganglia were significantly reduced by myrtenol treatment (12.5 and 25 mg/kg). Likewise, increased MPO activity and inflammatory histological scores in masseter muscle, as well as augmented levels of IL-1ß in the TG AND STSC, observed after CGN injection, were significantly decreased by myrtenol (25 and 50 mg/kg). Myrtenol has potential to treat orofacial inflammation and pain, which is partially related to IL-1ß levels in the trigeminal pathway and p38-MAPK modulation in trigeminal ganglia.

13.
Biomolecules ; 12(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204781

RESUMO

Mitochondria-targeted hydrogen sulfide (H2S) donor compounds, such as compound AP39, supply H2S into the mitochondrial environment and have shown several beneficial in vitro and in vivo effects in cardiovascular conditions such as diabetes and hypertension. However, the study of their direct vascular effects has not been addressed to date. Thus, the objective of the present study was to analyze the effects and describe the mechanisms of action of AP39 on the in vitro vascular reactivity of mouse mesenteric artery. Protein and gene expressions of the H2S-producing enzymes (CBS, CSE, and 3MPST) were respectively analyzed by Western blot and qualitative RT-PCR, as well the in vitro production of H2S by mesenteric artery homogenates. Gene expression of CSE and 3MPST in the vessels has been evidenced by RT-PCR experiments, whereas the protein expression of all the three enzymes was demonstrated by Western blotting experiments. Nonselective inhibition of H2S-producing enzymes by AOAA abolished H2S production, whereas it was partially inhibited by PAG (a CSE selective inhibitor). Vasorelaxation promoted by AP39 and its H2S-releasing moiety (ADT-OH) were significantly reduced after endothelium removal, specifically dependent on NO-cGMP signaling and SKCa channel opening. Endogenous H2S seems to participate in the mechanism of action of AP39, and glibenclamide-induced KATP blockade did not affect the vasorelaxant response. Considering the results of the present study and the previously demonstrated antioxidant and bioenergetic effects of AP39, we conclude that mitochondria-targeted H2S donors may offer a new promising perspective in cardiovascular disease therapeutics.


Assuntos
Artérias Mesentéricas , Vasodilatadores , Animais , Camundongos , Mitocôndrias/metabolismo , Tionas , Vasodilatadores/farmacologia
14.
J Physiol Biochem ; 77(4): 557-564, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34018097

RESUMO

Lipopolysaccharide (LPS) is a component of gram-negative bacteria wall that elicits inflammatory response in the host through the toll-like receptor 4 (TLR4) activation. In the lower urinary tract (LUT), bacteria-derived LPS has been associated with lower urinary tract symptoms (LUTS); however, little is known about the effects of LPS in the urethral smooth muscle (USM). In the present study, we evaluated the functional and molecular effects of LPS in mouse USM in vitro, focusing on the LPS-induced TLR4-signaling pathway. Male C57BL6/JUnib and TLR4 knockout mice (TLR4 KO) were used. The USM contraction was performed in the presence of LPS (62.5-500 µg/mL), indomethacin (10 µM), L-NAME (100 µM), and TAK 242 (1 µM). The RT-PCR assay for the IL-1ß, NF-kB, and COX-2 genes was also evaluated in the presence of LPS (125 µg/mL) and caspase 1 inhibitor (20 µM). Our results showed that LPS reduces mouse USM contraction elicited by phenylephrine and vasopressin. This LPS-induced urethral inhibitory effect was not reversed by the TLR4 inhibition or its absence in the TLR4 KO mice. Conversely, indomethacin (but not L-NAME) reversed the LPS-induced USM hypocontractility. Molecular protocols indicated upregulation of IL-1ß, NF-kß, and COX-2 mRNA upon LPS incubation, which were blunted by caspase 1 inhibition. Our data showed that LPS reduced mouse USM contraction independently of TLR4 activation, involving caspase 1 and IL1ß, NF-kB, and COX-2 gene overexpression. Therefore, this alternative pathway might be a valuable target to reduce the LPS-induced urethral dysfunction under infection and inflammatory conditions.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Músculo Liso/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais
15.
Eur J Pharmacol ; 890: 173636, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33053380

RESUMO

Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1ß, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 µg/day, i.art.), Hp given orally (20 µg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 µg/knee) or p.o. (20 µg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1ß, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Hemoglobinas/farmacologia , Dor Nociceptiva/prevenção & controle , Fragmentos de Peptídeos/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Citocinas/metabolismo , Edema/tratamento farmacológico , Marcha/efeitos dos fármacos , Hemoglobinas/administração & dosagem , Inflamação/tratamento farmacológico , Injeções Intra-Articulares , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Leucócitos/efeitos dos fármacos , Masculino , Fragmentos de Peptídeos/administração & dosagem , Ratos Sprague-Dawley , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Substância P/metabolismo
16.
Arch Toxicol ; 84(2): 109-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19399481

RESUMO

The environmental chemical 1,2-naphthoquinone (1,2-NQ) is implicated in the exacerbation of airways diseases induced by exposure to diesel exhaust particles (DEP), which involves a neurogenic-mediated mechanism. Plasma extravasation in trachea, main bronchus and lung was measured as the local (125)I-bovine albumin accumulation. RT-PCR quantification of TRPV1 and tachykinin (NK(1) and NK(2)) receptor gene expression were investigated in main bronchus. Intratracheal injection of DEP (1 and 5 mg/kg) or 1,2-NQ (35 and 100 nmol/kg) caused oedema in trachea and bronchus. 1,2-NQ markedly increased the DEP-induced responses in the rat airways in an additive rather than synergistic manner. This effect that was significantly reduced by L-732,138, an NK(1) receptor antagonist, and in a lesser extent by SR48968, an NK(2) antagonist. Neonatal capsaicin treatment also markedly reduced DEP and 1,2-NQ-induced oedema. Exposure to pollutants increased the TRPV1, NK(1) and NK(2) receptors gene expression in bronchus, an effect was partially suppressed by capsaicin treatment. In conclusion, our results are consistent with the hypothesis that DEP-induced airways oedema is highly influenced by increased ambient levels of 1,2-NQ and takes place by neurogenic mechanisms involving up-regulation of TRPV1 and tachykinin receptors.


Assuntos
Naftoquinonas/toxicidade , Neurônios Aferentes/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Animais , Feminino , Inflamação/metabolismo , Masculino , Neurônios Aferentes/metabolismo , Ratos , Ratos Wistar , Sistema Respiratório/inervação , Sistema Respiratório/metabolismo
17.
EXCLI J ; 19: 707-717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636724

RESUMO

Extensive literature regarding the health side effects of ambient pollutants (AP) are available, such as diesel exhaust particles (DEPs), but limited studies are available on their electrophilic contaminant 1,2-Naphthoquinone (1,2-NQ), enzymatically derived from naphthalene. This review summarizes relevant toxicologic and biological properties of 1,2-NQ as an environmental pollutant or to a lesser degree as a backbone in drug development to treat infectious diseases. It presents evidence of 1,2-NQ-mediated genotoxicity, neurogenic inflammation, and cytotoxicity due to several mechanistic properties, including the production of reactive oxygen species (ROS), that promote cell damage, carcinogenesis, and cell death. Many signal transduction pathways act as a vulnerable target for 1,2-NQ, including kappaB kinase b (IKKbeta) and protein tyrosine phosphatase 1B (PTP1B). Antioxidant molecules act in defense against ROS/RNS-mediated 1,2-NQ responses to injury. Nonetheless, its inhibitory effects at PTP1B, altering the insulin signaling pathway, represents a new therapeutic target to treat diabetes type 2. Questions exist whether exposure to 1,2-NQ may promote arylation of the Keap1 factor, a negative regulator of Nrf2, as well as acting on the sepiapterin reductase activity, an NADPH-dependent enzyme which catalyzes the formation of critical cofactors in aromatic amino acid metabolism and nitric oxide biosynthesis. Exposure to 1,2-NQ is linked to neurologic, behavioral, and developmental disturbances as well as increased susceptibility to asthma. Limited new knowledge exists on molecular modeling of quinones molecules as antitumoral and anti-microorganism agents. Altogether, these studies suggest that 1,2-NQ and its intermediate compounds can initiate a number of pathological pathways as AP in living organisms but it can be used to better understand molecular pathways.

18.
Br J Pharmacol ; 177(4): 857-865, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051046

RESUMO

Skin diseases constitute a major health problem affecting a high proportion of the population every day and have different aetiologies that include inflammation, infections, and tumours. Hydrogen sulfide (H2 S) is a gaseous signalling molecule recognized as a gasotransmitter together with NO and carbon monoxide. Under physiological conditions, H2 S is produced in the skin by enzymic pathways and plays a physiological role in a variety of functions, such as vasodilatation, cell proliferation, apoptosis, and inflammation. Alterations of H2 S production are implicated in a variety of dermatological diseases, such as psoriasis, melanoma, and other dermatoses. On the other hand, H2 S-releasing-based therapies based on H2 S donor compounds are being developed to treat some of these situations. In this review, we provide an up-to-date overview of the role of H2 S in the normal skin and its clinical and pathological significance, as well as the therapeutic potential of different H2 S donors for treatment of skin diseases. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Transdução de Sinais
19.
Antioxid Redox Signal ; 33(14): 1003-1009, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32064887

RESUMO

Aims: The covalent linking of nonsteroidal anti-inflammatory drugs to a hydrogen sulfide (H2S)-releasing moiety has been shown to dramatically reduce gastrointestinal (GI) damage and bleeding, as well as increase anti-inflammatory and analgesic potency. We have tested the hypothesis that an H2S-releasing derivative of ketoprofen (ATB-352) would exhibit enhanced efficacy without significant GI damage in a mouse model of allodynia/hyperalgesia. Results: ATB-352 was significantly more potent and effective as an analgesic than ketoprofen and did not elicit GI damage. Pretreatment with an antagonist of the CB1 cannabinoid receptor (AM251) significantly reduced the analgesic effects of ATB-352. The CB1 antagonist exacerbated GI damage when coadministered with ketoprofen, but GI damage was not induced by the combination of ATB-352 and the CB1 antagonist. In vitro, ATB-352 was substantially more potent than ketoprofen as an inhibitor of fatty acid amide hydrolase, consistent with a contribution of endogenous cannabinoids to the analgesic effects of this drug. Blood anandamide levels were significantly depressed by ketoprofen, but remained unchanged after treatment with ATB-352. Innovation: Ketoprofen is a potent analgesic, but its clinical use, even in the short term, is significantly limited by its propensity to cause significant ulceration and bleeding in the GI tract. Covalently linking an H2S-releasing moiety to ketoprofen profoundly reduces the GI toxicity of the drug, while boosting analgesic effectiveness. Conclusion: This study demonstrates a marked enhancement of the potency and effectiveness of ATB-352, an H2S-releasing derivative of ketoprofen, in part, through the involvement of the endogenous cannabinoid system. This may have significant advantages for the control and management of pain, such as in a postoperative setting.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/química , Canabinoides/metabolismo , Canabinoides/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Sinergismo Farmacológico , Ácidos Graxos/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Sulfeto de Hidrogênio/efeitos adversos , Sulfeto de Hidrogênio/química , Cetoprofeno/farmacologia , Camundongos , Dor/tratamento farmacológico , Dor/etiologia
20.
Toxicon ; 53(1): 42-52, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18977380

RESUMO

Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigriventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P. l. lanio venom (1nmol of histamine/7mug of venom) that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated.


Assuntos
Inflamação/induzido quimicamente , Pele/efeitos dos fármacos , Venenos de Vespas/toxicidade , Vespas/fisiologia , Sequência de Aminoácidos , Animais , Permeabilidade Capilar/efeitos dos fármacos , Edema/induzido quimicamente , Histamina/metabolismo , Metaloproteases/metabolismo , Camundongos , Ratos , Receptores de Taquicininas/metabolismo , Taquicininas/química , Taquicininas/metabolismo , Taquicininas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA