Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 26: 89-114, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20565253

RESUMO

Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins and their glycosaminoglycan chains is matched by diverse functions. However, all assume roles as coreceptors, often working alongside high-affinity growth factor receptors or adhesion receptors such as integrins. Other common themes are an ability to signal through their cytoplasmic domains, often to the actin cytoskeleton, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveals roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteoglicanas/metabolismo , Transdução de Sinais , Animais , Humanos , Camundongos , Camundongos Knockout
2.
Biochem Soc Trans ; 51(3): 1083-1096, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37334846

RESUMO

Syndecans are transmembrane heparan sulfate proteoglycans present on most mammalian cell surfaces. They have a long evolutionary history, a single syndecan gene being expressed in bilaterian invertebrates. Syndecans have attracted interest because of their potential roles in development and disease, including vascular diseases, inflammation and various cancers. Recent structural data is providing important insights into their functions, which are complex, involving both intrinsic signaling through cytoplasmic binding partners and co-operative mechanisms where syndecans form a signaling nexus with other receptors such as integrins and tyrosine kinase growth factor receptors. While the cytoplasmic domain of syndecan-4 has a well-defined dimeric structure, the syndecan ectodomains are intrinsically disordered, which is linked to a capacity to interact with multiple partners. However, it remains to fully establish the impact of glycanation and partner proteins on syndecan core protein conformations. Genetic models indicate that a conserved property of syndecans links the cytoskeleton to calcium channels of the transient receptor potential class, compatible with roles as mechanosensors. In turn, syndecans influence actin cytoskeleton organization to impact motility, adhesion and the extracellular matrix environment. Syndecan clustering with other cell surface receptors into signaling microdomains has relevance to tissue differentiation in development, for example in stem cells, but also in disease where syndecan expression can be markedly up-regulated. Since syndecans have potential as diagnostic and prognostic markers as well as possible targets in some forms of cancer, it remains important to unravel structure/function relationships in the four mammalian syndecans.


Assuntos
Proteoglicanas de Heparan Sulfato , Transdução de Sinais , Animais , Sindecanas/química , Sindecanas/metabolismo , Membrana Celular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Receptores de Superfície Celular/metabolismo , Matriz Extracelular/metabolismo , Mamíferos/metabolismo
3.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921767

RESUMO

Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody-toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.


Assuntos
Carcinoma/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Sindecana-1/metabolismo , Animais , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Proteoglicanas/metabolismo
4.
Adv Exp Med Biol ; 1131: 1079-1102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646546

RESUMO

In multicellular organisms, the cells are surrounded by persistent, dynamic extracellular matrix (ECM), the largest calcium reservoir in animals. ECM regulates several aspects of cell behavior including cell migration and adhesion, survival, gene expression and differentiation, thus playing a significant role in health and disease. Calcium is reported to be important in the assembly of ECM, where it binds to many ECM proteins. While serving as a calcium reservoir, ECM macromolecules can directly interact with cell surface receptors resulting in calcium transport across the membrane. This chapter mainly focusses on the role of cell-ECM interactions in cellular calcium regulation and how calcium itself mediates these interactions.


Assuntos
Cálcio , Matriz Extracelular , Animais , Cálcio/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo
5.
Biochem Biophys Res Commun ; 503(2): 615-620, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29902459

RESUMO

In human skin, melanocytes and their neighboring keratinocytes have a close functional interrelationship. Keratinocytes, which represent the prevalent cell type of human skin, regulate melanocytes through various mechanisms. Here, we use a keratinocyte and melanoma co-culture system to show for the first time that keratinocytes regulate the cell surface expression of N-cadherin through cell-cell contact. Compared to mono-cultured human melanoma A375 cells, which expressed high levels of N-cadherin, those co-cultured with the HaCaT human keratinocyte cell line showed reduced levels of N-cadherin. This reduction was most evident in areas of A375 cells that underwent cell-cell contact with the HaCaT cells, whereas HaCaT cell-derived extracellular matrix and conditioned medium both failed to reduce N-cadherin levels. The intracellular level of calcium in co-cultured A375 cells was lower than that in mono-cultured A375 cells, and treatment with a cell-permeant calcium chelator (BAPTA) reduced the N-cadherin level of mono-cultured A375 cells. Furthermore, co-culture with HaCaT cells reduced the expression levels of transient receptor potential cation channel (TRPC) 1, -3 and -6 in A375 cells, and siRNA-mediated multi-depletion of TRPC1, -3 and -6 reduced the N-cadherin level in these cells. Taken together, these data suggest that keratinocytes negatively regulate the N-cadherin levels of melanoma cells via cell-to-cell contact-mediated calcium regulation.


Assuntos
Caderinas/metabolismo , Cálcio/metabolismo , Comunicação Celular , Queratinócitos/patologia , Melanoma/patologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Queratinócitos/metabolismo , Melanoma/metabolismo , Camundongos , Canais de Cátion TRPC/metabolismo
6.
Hepatology ; 66(5): 1601-1615, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28543100

RESUMO

Accidental or intentional misuse of acetaminophen (APAP) is the leading cause of acute liver failure in the Western world. Although mechanisms that trigger APAP-induced liver injury (AILI) are well known, those that halt the progression of APAP liver disease and facilitate liver recovery are less understood. Heparan sulfate proteoglycans (HSPGs) bind to and regulate various tissue injury factors through their heparan sulfate (HS) chains, but the importance of HSPGs in liver injury in vivo remains unknown. Here, we examined the role of syndecan-1, the major cell-surface HSPG of hepatocytes, in AILI. Ablation of syndecan-1 in mice led to unopposed progression of liver injury upon APAP overdose. However, direct APAP hepatoxicity and liver injury at early times post-APAP overdose were unaffected by syndecan-1, suggesting that syndecan-1 influences later mechanisms that lead to liver repair. The exuberant liver injury phenotypes in syndecan-1 null (Sdc1-/- ) mice were traced to a deficiency in protein kinase B (Akt) activation in hepatocytes, which led to a delayed increase in glycogen synthase kinase-3ß (GSK-3ß)-mediated hepatocyte apoptosis. Inhibition of Akt worsened, whereas inhibition of GSK-3ß and caspases protected mice from AILI. Moreover, administration of purified syndecan-1, HS, or engineered heparan compounds containing 2-O-sulfate groups rescued Sdc1-/- mice from AILI by potentiating Akt signaling and inhibiting GSK-3ß-mediated apoptosis in hepatocytes. In addition, HS showed a significantly prolonged therapeutic efficacy as compared to N-acetylcysteine. CONCLUSION: These results demonstrate that 2-O-sulfated domains in syndecan-1 HS halt disease progression and promote liver repair by enhancing hepatocyte survival in AILI. We propose that syndecan-1 is a critical endogenous factor that controls the balance between prosurvival signaling and apoptosis in hepatocytes in APAP liver disease. (Hepatology 2017;66:1601-1615).


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sindecana-1/metabolismo , Animais , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Hepatócitos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Biochem J ; 474(12): 1965-1979, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546458

RESUMO

Cell surface proteoglycans comprise a transmembrane or membrane-associated core protein to which one or more glycosaminoglycan chains are covalently attached. They are ubiquitous receptors on nearly all animal cell surfaces. In mammals, the cell surface proteoglycans include the six glypicans, CD44, NG2 (CSPG4), neuropilin-1 and four syndecans. A single syndecan is present in invertebrates such as nematodes and insects. Uniquely, syndecans are receptors for many classes of proteins that can bind to the heparan sulphate chains present on syndecan core proteins. These range from cytokines, chemokines, growth factors and morphogens to enzymes and extracellular matrix (ECM) glycoproteins and collagens. Extracellular interactions with other receptors, such as some integrins, are mediated by the core protein. This places syndecans at the nexus of many cellular responses to extracellular cues in development, maintenance, repair and disease. The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins. All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration. Recent data now suggest that syndecans can regulate stretch-activated ion channels. The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion. This area sheds new light on the syndecans, not least since evidence suggests that this is an evolutionarily conserved relationship that is also potentially important in the progression of some common diseases where syndecans are implicated.


Assuntos
Membrana Celular/metabolismo , Junções Célula-Matriz/metabolismo , Ativação do Canal Iônico , Modelos Biológicos , Sindecanas/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Animais , Adesão Celular , Movimento Celular , Junções Célula-Matriz/química , Sequência Conservada , Humanos , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Homologia Estrutural de Proteína , Sindecanas/química , Canais de Cátion TRPC/química , Canais de Cátion TRPM/química
8.
Biochim Biophys Acta ; 1855(2): 276-300, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829250

RESUMO

Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neovascularização Patológica/genética , Proteoglicanas/biossíntese , Pesquisa Translacional Biomédica , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/uso terapêutico , Transdução de Sinais/genética , Microambiente Tumoral/genética
9.
Biochim Biophys Acta ; 1840(8): 2482-90, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24447566

RESUMO

BACKGROUND: While syndecan-2 is usually considered a mesenchymal transmembrane proteoglycan, it can be upregulated in some tumour cells, such as the malignant breast carcinoma cell line, MDA-MB231. Depletion of this syndecan by siRNA, but not other syndecans, has a marked effect on cell morphology, increasing spreading, microfilament bundle and focal adhesion formation, with reduced cell migration. METHODS: A combination of siRNA transfection, immunofluorescence microscopy, phosphoprotein analysis and migration assays was used to determine how syndecan-2 may influence the cytoskeleton. RESULTS: The altered adhesion upon syndecan-2 depletion was dependent on the RhoGTPases. p190ARhoGAP relocated to the margins of spreading cells, where it codistributed with syndecan-4 and active ß1-integrin. This was accompanied by increased RhoGAP tyrosine phosphorylation, indicative of activity and RhoGTPase suppression. Consistent with this, GTP-RhoA was strongly present at the edges of control cells, but lost after syndecan-2 reduction by siRNA treatments. Further, RhoA, but not RhoC was shown to be essential for the anchored phenotype of these breast carcinoma cells that accompanied siRNA-mediated loss of syndecan-2. CONCLUSIONS: Syndecan-2 has a key role in promoting the invasive activity of these cells, in part by regulating the RhoGTPases. GENERAL SIGNIFICANCE: Syndecan-2, as a cell surface receptor is accessible for targeting to determine whether breast tumour progression is altered. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Forma Celular , Sindecana-2/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Integrina beta1/metabolismo , Transporte Proteico , Proteínas Repressoras/metabolismo , Sindecana-4/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC , Quinases da Família src/metabolismo
10.
Mol Cancer ; 14: 15, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623282

RESUMO

BACKGROUND: Cell surface proteoglycans interact with numerous regulators of cell behavior through their glycosaminoglycan chains. The syndecan family of transmembrane proteoglycans are virtually ubiquitous cell surface receptors that are implicated in the progression of some tumors, including breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. METHODS: The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two-tailed paired t-test and one-way ANOVA with Tukey's post-hoc test were used in the analysis of data. RESULTS: MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced invasion and matrix degradation. The molecular basis for this effect was revealed to have two components. First, thrombin inhibition contributed to enhanced cell adhesion and reduced invasion. Second, a specific loss of cell surface syndecan-2 was noted. The ensuing junction formation was dependent on syndecan-4, whose role in promoting actin cytoskeletal organization is known. Syndecan-2 interacts with, and may regulate, caveolin-2. Depletion of either molecule had the same adhesion-promoting influence, along with reduced invasion, confirming a role for this complex in maintaining the invasive phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. CONCLUSION: Cell surface proteoglycans, notably syndecan-2, may be important regulators of breast carcinoma progression through regulation of cytoskeleton, cell adhesion and invasion.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias da Mama/genética , Caveolina 2/genética , Caveolina 2/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Heparina/metabolismo , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Fenótipo , Receptor PAR-1/metabolismo , Transdução de Sinais , Sindecana-2/genética , Sindecana-2/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Trombina/metabolismo
11.
Int J Exp Pathol ; 96(1): 1-10, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25546317

RESUMO

In the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.


Assuntos
Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sindecanas/metabolismo , Animais , Genótipo , Humanos , Inflamação/metabolismo , Ligantes , Camundongos Knockout , Neoplasias/metabolismo , Fenótipo , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Relação Estrutura-Atividade , Sindecanas/química , Sindecanas/deficiência , Sindecanas/genética
12.
J Biol Chem ; 288(43): 31229-40, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24036111

RESUMO

The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II interaction is controlled, we further mapped the ROCK II interaction site of CRMP-2 and examined whether phosphorylation states of CRMP-2 affected the interaction. Here, we show that an N-terminal fragment of the long CRMP-2 splice variant (CRMP-2L) alone binds ROCK II and inhibits colon carcinoma cell migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition of PI3K also reduced colocalization of ROCK II and CRMP-2 at the cell periphery in human breast carcinoma cells. Mimicking GSK3 phosphorylation of CRMP-2 significantly reduced CRMP-2 binding of recombinant full-length and catalytic domain of ROCK II. These data implicate GSK3 in the regulation of ROCK II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Movimento Celular , Neoplasias do Colo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Fosforilação/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Neoplásico/genética , Ratos , Quinases Associadas a rho/genética
13.
J Biol Chem ; 287(40): 33905-16, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22869369

RESUMO

The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized. In uxs1 and b3gat3 mutant larvae, biosynthesis of CS was shown to be virtually abolished, whereas these mutants still were capable of synthesizing 50% of the HS produced in control larvae. extl3 and ext2 mutants on the other hand were shown to synthesize reduced amounts of hypersulfated HS. Further, extl3 mutants produced higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies in the single mutant strains, as well as in ext2;uxs1 double mutants, was conducted. A correlation between HS and CS production and phenotypes was found, such that impaired HS biosynthesis was shown to affect chondrocyte intercalation, whereas impaired CS biosynthesis inhibited formation of the extracellular matrix surrounding chondrocytes.


Assuntos
Cartilagem/metabolismo , Sulfatos de Condroitina/química , Regulação da Expressão Gênica no Desenvolvimento , Heparitina Sulfato/química , Alelos , Animais , Cruzamentos Genéticos , Progressão da Doença , Feminino , Genótipo , Masculino , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Biológicos , Morfogênese , Mutação , Faringe/patologia , Peixe-Zebra
14.
J Histochem Cytochem ; 71(9): 495-508, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37596792

RESUMO

Recently there have been reports that identify two transient receptor potential channels in cell-matrix junctions known as focal adhesions. These are the calcium channel TRP canonical 7 and the calcium-activated monovalent ion channel, TRP melastatin (TRPM) 4. Here, we report on the occurrence of TRPM4 in focal adhesions of fibroblasts. Of three commercial antibodies recognizing this channel, only one yielded focal adhesion staining, while the other two did not. The epitope recognized by the focal adhesion-localizing antibody was mapped to the extreme C-terminus of the TRPM4 protein. The other two antibodies bind to N-terminal regions of the TRPM4 proteins. Deletion of the TRPM4 gene by CRISPR/cas9 techniques confirmed that this channel is a bona fide focal adhesion component, while expression of full-length TRPM4 proteins suggested that processing may occur to yield a form that localizes to focal adhesions. Given the reports that this channel may influence migratory behavior of cells and is linked to cardiovascular disease, TRPM4 functions in adhesion should be explored in greater depth. (J Histochem Cytochem 71: 495-508, 2023).


Assuntos
Doenças Cardiovasculares , Adesões Focais , Humanos , Anticorpos , Epitopos , Fibroblastos
15.
J Biol Chem ; 286(52): 44391-402, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22049079

RESUMO

Hedgehog (Hh) proteins are morphogens that mediate many developmental processes. Hh signaling is significant for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hh proteins require heparan sulfate proteoglycans (HSPGs) for their normal distribution and signaling activity. Here, we have used molecular modeling to examine the heparin-binding domain of sonic hedgehog (Shh). In biochemical and cell biological assays, the importance of specific residues of the putative heparin-binding domain for signaling was assessed. It was determined that key residues in human (h) Shh involved in heparin and HSPG syndecan-4 binding and biological activity included the well known cationic Cardin-Weintraub motif (lysines 32-38) but also a previously unidentified major role for lysine 178. The activity of Shh mutated in these residues was tested by quantitation of alkaline phosphatase activity in C3H10T1/2 cells differentiating into osteoblasts and hShh-inducible gene expression in PANC1 human pancreatic ductal adenocarcinoma cells. Mutated hShhs such as K37S/K38S, K178S, and particularly K37S/K38S/K178S that could not interact with heparin efficiently had reduced signaling activity compared with wild type hShh or a control mutation (K74S). In addition, the mutant hShh proteins supported reduced proliferation and invasion of PANC1 cells compared with control hShh proteins, following endogenous hShh depletion by RNAi knockdown. The data correlated with reduced Shh multimerization where the Lys-37/38 and/or Lys-178 mutations were examined. These studies provide a new insight into the functional roles of hShh interactions with HSPGs, which may allow targeting this aspect of hShh biology in, for example, pancreatic ductal adenocarcinoma.


Assuntos
Proteínas Hedgehog/metabolismo , Heparitina Sulfato/metabolismo , Multimerização Proteica , Transdução de Sinais/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Proteínas Hedgehog/genética , Heparitina Sulfato/genética , Humanos , Mutação de Sentido Incorreto , Osteoblastos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Estrutura Terciária de Proteína , Sindecana-4/genética , Sindecana-4/metabolismo
16.
J Biol Chem ; 285(30): 23296-308, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20472934

RESUMO

Conventional protein kinase C (PKC) isoforms are essential serine/threonine kinases regulating many signaling networks. At cell adhesion sites, PKCalpha can impact the actin cytoskeleton through its influence on RhoGTPases, but the intermediate steps are not well known. One important regulator of RhoGTPase function is the multifunctional guanine nucleotide dissociation inhibitor RhoGDIalpha that sequesters several related RhoGTPases in an inactive form, but it may also target them through interactions with actin-associated proteins. Here, it is demonstrated that conventional PKC phosphorylates RhoGDIalpha on serine 34, resulting in a specific decrease in affinity for RhoA but not Rac1 or Cdc42. The mechanism of RhoGDIalpha phosphorylation is distinct, requiring the kinase and phosphatidylinositol 4,5-bisphosphate, consistent with recent evidence that the inositide can activate, localize, and orient PKCalpha in membranes. Phosphospecific antibodies reveal endogenous phosphorylation in several cell types that is sensitive to adhesion events triggered, for example, by hepatocyte growth factor. Phosphorylation is also sensitive to PKC inhibition. Together with fluorescence resonance energy transfer microscopy sensing GTP-RhoA levels, the data reveal a common pathway in cell adhesion linking two essential mediators, conventional PKC and RhoA.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteína Quinase C/metabolismo , Serina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Adesão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Ativação Enzimática , Fibroblastos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Fosforilação , Ratos , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico , Proteína rhoA de Ligação ao GTP/metabolismo
17.
J Biol Chem ; 285(19): 14247-58, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20154082

RESUMO

Fibroblasts null for the transmembrane proteoglycan, syndecan-4, have an altered actin cytoskeleton, compared with matching wild-type cells. They do not organize alpha-smooth muscle actin into bundles, but will do so when full-length syndecan-4 is re-expressed. This requires the central V region of the core protein cytoplasmic domain, though not interactions with PDZ proteins. A second key requirement is multiple heparan sulfate chains. Mutant syndecan-4 with no chains, or only one chain, failed to restore the wild-type phenotype, whereas those expressing two or three were competent. However, clustering of one-chain syndecan-4 forms with antibodies overcame the block, indicating that valency of interactions with ligands is a key component of syndecan-4 function. Measurements of focal contact/adhesion size and focal adhesion kinase phosphorylation correlated with syndecan-4 status and alpha-smooth muscle actin organization, being reduced where syndecan-4 function was compromised by a lack of multiple heparan sulfate chains.


Assuntos
Actinas/metabolismo , Adesão Celular , Fibroblastos/metabolismo , Heparitina Sulfato/fisiologia , Sindecana-4/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Células Cultivadas , Chlorocebus aethiops , Citoesqueleto/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibronectinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosforilação , Proteoglicanas/metabolismo
18.
Open Biol ; 11(2): 200377, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33561383

RESUMO

The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.


Assuntos
Sindecanas/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Heparitina Sulfato/metabolismo , Humanos , Doenças do Sistema Imunitário/metabolismo , Transdução de Sinais , Sindecanas/química
19.
Cell Tissue Res ; 339(1): 31-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19597846

RESUMO

Syndecans are type I transmembrane proteins having a core protein modified with glycosaminoglycan chains, most commonly heparan sulphate. They are an ancient group of molecules, present in invertebrates and vertebrates. Among the plethora of molecules that can interact with heparan sulphate, the collagens and glycoproteins of the extracellular matrix are prominent. Frequently, they do so in conjunction with other receptors, most notably the integrins. For this reason, they are often referred to as "co-receptors". However, just as with integrins, syndecans can interact with actin-associated proteins and signalling molecules, such as protein kinases. Some aspects of syndecan signalling are understood but much remains to be learned. The functions of syndecans in regulating cell adhesion and extracellular matrix assembly are described here. Evidence from null mice suggests that syndecans have roles in postnatal tissue repair, inflammation and tumour progression. Developmental deficits in lower vertebrates in which syndecans are eliminated are also informative and suggest that, in mammals, redundancy is a key issue.


Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Heparitina Sulfato/metabolismo , Transdução de Sinais , Sindecanas/metabolismo , Animais , Colágeno/genética , Matriz Extracelular/genética , Heparitina Sulfato/genética , Humanos , Integrinas/genética , Integrinas/metabolismo , Camundongos , Camundongos Mutantes , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sindecanas/genética
20.
Cell Tissue Res ; 339(3): 613-24, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20033213

RESUMO

Despite the mouse being an important laboratory species, little is known about changes in its extracellular matrix (ECM) during follicle and corpora lutea formation and regression. Follicle development was induced in mice (29 days of age/experimental day 0) by injections of pregnant mare's serum gonadotrophin on days 0 and 1 and ovulation was induced by injection of human chorionic gonadotrophin on day 2. Ovaries were collected for immunohistochemistry (n=10 per group) on days 0, 2 and 5. Another group was mated and ovaries were examined on day 11 (n=7). Collagen type IV alpha1 and alpha2, laminin alpha1, beta1 and gamma1 chains, nidogens 1 and 2 and perlecan were present in the follicular basal lamina of all developmental stages. Collagen type XVIII was only found in basal lamina of primordial, primary and some preantral follicles, whereas laminin alpha2 was only detected in some preantral and antral follicles. The focimatrix, a specialised matrix of the membrana granulosa, contained collagen type IV alpha1 and alpha2, laminin alpha1, beta1 and gamma1 chains, nidogens 1 and 2, perlecan and collagen type XVIII. In the corpora lutea, staining was restricted to capillary sub-endothelial basal laminas containing collagen type IV alpha1 and alpha2, laminin alpha1, beta1 and gamma1 chains, nidogens 1 and 2, perlecan and collagen type XVIII. Laminins alpha4 and alpha5 were not immunolocalised to any structure in the mouse ovary. The ECM composition of the mouse ovary has similarities to, but also major differences from, other species with respect to nidogens 1 and 2 and perlecan.


Assuntos
Corpo Lúteo/metabolismo , Matriz Extracelular/metabolismo , Folículo Ovariano/metabolismo , Animais , Corpo Lúteo/citologia , Feminino , Humanos , Imuno-Histoquímica , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Folículo Ovariano/citologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA