Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1022-1054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332153

RESUMO

Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor ß (TGFß), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFß signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFß target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFß induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.


Assuntos
Colangiocarcinoma , RNA Longo não Codificante , Humanos , Via de Sinalização Wnt , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo
2.
J Pathol ; 263(4-5): 482-495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38872438

RESUMO

Liver fibrosis is the consequence of chronic liver injury in the presence of an inflammatory component. Although the main executors of this activation are known, the mechanisms that lead to the inflammatory process that mediates the production of pro-fibrotic factors are not well characterized. Epidermal growth factor receptor (EGFR) signaling in hepatocytes is essential for the regenerative processes of the liver; however, its potential role in regulating the fibrotic niche is not yet clear. Our group generated a mouse model that expresses an inactive truncated form of the EGFR specifically in hepatocytes (ΔEGFR mice). Here, we have analyzed the response of WT and ΔEGFR mice to chronic treatment with carbon tetrachloride (CCl4), which induces a pro-inflammatory and fibrotic process in the liver. The results indicated that the hallmarks of liver fibrosis were attenuated in CCl4-treated ΔEGFR mice when compared with CCl4-treated WT mice, coinciding with a faster resolution of the fibrotic process and ameliorated damage. The absence of EGFR activity in hepatocytes induced changes in the pattern of immune cells in the liver, with a notable increase in the population of M2 macrophages, more related to fibrosis resolution, as well as in the population of lymphocytes related to eradication of the damage. Transcriptome analysis of hepatocytes, and secretome studies of extracellular media from in vitro experiments, allowed us to elucidate the specific molecular mechanisms regulated by EGFR that mediate hepatocyte production of both pro-fibrotic and pro-inflammatory mediators; these have consequences for the deposition of extracellular matrix proteins, as well as for the immune microenvironment. Overall, our study uncovered novel mechanistic insights regarding EGFR kinase-dependent actions in hepatocytes that reveal its key role in chronic liver damage. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Tetracloreto de Carbono , Receptores ErbB , Hepatócitos , Transdução de Sinais , Animais , Receptores ErbB/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Comunicação Celular , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Transgênicos
3.
Mol Vis ; 30: 160-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601020

RESUMO

Purpose: Uveal melanoma (UM) is a deadly cancer with limited therapeutic options. At advanced stages, UM cells metastasize almost exclusively into the liver, where targeting metastatic UM cells remain a clinical challenge. Transforming growth factor beta (TGF-ß) exhibits a functional duality in cancer, with one arm limiting tumor growth at an early stage and the second arm promoting metastasis at an advanced stage, notably by inducing an epithelial-to-mesenchymal transition. Thus, we hypothesized that targeting the TGF-ß pathway could be relevant in the treatment of metastatic UM. Methods: In this study, we first characterized the pseudoepithelial/mesenchymal phenotype of UM cell lines Mel270 and 92.1. We then treated the cell lines with TGF-ß to evaluate their responsiveness to the cytokine and to characterize the functional impact of TGF-ß on their cell viability. Results: The results demonstrated, first, that the UM cell lines exhibited a mesenchymal phenotype and responded to TGF-ß treatment in vitro and, second, that TGF-ß promoted a cytostatic effect on the UM cell lines. Conclusions: Our findings indicate that UM cells are sensitive to the two arms of TGF-ß signaling, which suggests that targeting the TGF-ß pathway could be challenging in UM and would require a precise selection of patients in which only the prometastatic arm of TGF-ß is activated.


Assuntos
Melanoma , Transdução de Sinais , Fator de Crescimento Transformador beta , Neoplasias Uveais , Humanos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fenótipo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1 , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética
4.
Blood ; 138(1): 57-70, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33881493

RESUMO

Follicular lymphoma (FL) originates in the lymph nodes (LNs) and infiltrates bone marrow (BM) early in the course of the disease. BM FL B cells are characterized by a lower cytological grade, decreased proliferation, and a specific phenotypic and subclonal profile. Mesenchymal stromal cells (MSCs) obtained from FL BM display a specific gene expression profile (GEP), including enrichment for a lymphoid stromal cell signature, and an increased capacity to sustain FL B-cell growth. However, the mechanisms triggering the formation of the medullar FL permissive stromal niche have not been identified. In the current work, we demonstrate that FL B cells produce extracellular vesicles (EVs) that can be internalized by BM-MSCs, making them more efficient to support FL B-cell survival and quiescence. Accordingly, EVs purified from FL BM plasma activate transforming growth factor ß-dependent and independent pathways in BM-MSCs and modify their GEP, triggering an upregulation of factors classically associated with hematopoietic stem cell niche, including CXCL12 and angiopoietin-1. Moreover, we provide the first characterization of BM FL B-cell GEP, allowing the definition of the landscape of molecular interactions they could engage with EV-primed BM-MSCs. This work identifies FL-derived EVs as putative mediators of BM stroma polarization and supports further investigation of their clinical interest for targeting the crosstalk between BM-MSCs and malignant B cells.


Assuntos
Linfócitos B/patologia , Células da Medula Óssea/patologia , Polaridade Celular , Vesículas Extracelulares/patologia , Linfoma Folicular/patologia , Sequência de Bases , Células da Medula Óssea/metabolismo , Comunicação Celular , Diferenciação Celular , Endocitose , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Linfoma Folicular/genética , Heterotrímero de Linfotoxina alfa1 e beta2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/genética
5.
Gut ; 71(8): 1669-1683, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580963

RESUMO

Cholangiocarcinoma (CCA) is a malignant tumour arising from the biliary system. In Europe, this tumour frequently presents as a sporadic cancer in patients without defined risk factors and is usually diagnosed at advanced stages with a consequent poor prognosis. Therefore, the identification of biomarkers represents an utmost need for patients with CCA. Numerous studies proposed a wide spectrum of biomarkers at tissue and molecular levels. With the present paper, a multidisciplinary group of experts within the European Network for the Study of Cholangiocarcinoma discusses the clinical role of tissue biomarkers and provides a selection based on their current relevance and potential applications in the framework of CCA. Recent advances are proposed by dividing biomarkers based on their potential role in diagnosis, prognosis and therapy response. Limitations of current biomarkers are also identified, together with specific promising areas (ie, artificial intelligence, patient-derived organoids, targeted therapy) where research should be focused to develop future biomarkers.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Inteligência Artificial , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores , Biomarcadores Tumorais , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/patologia , Humanos
6.
Hepatology ; 74(6): 3194-3212, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34297412

RESUMO

BACKGROUND AND AIMS: Zinc finger E-box binding homeobox 1 (ZEB1) is a transcription factor that promotes metastatic and stem cell features, which has been associated with poor prognosis in cholangiocarcinoma (CCA), a desmoplastic cancer enriched in cancer-associated fibroblasts (CAFs). We aimed to define ZEB1 regulatory functions in malignant and stromal compartments of CCA. APPROACH AND RESULTS: Bioinformatic and immunohistochemical analyses were performed to determine correlations between ZEB1 and markers of progressiveness in human intrahepatic CCA (iCCA). Gain-of-function and loss-of-function models were generated in CCA cells and liver myofibroblasts as a model of CAFs. Conditioned media (CM) was used to unravel tumor-stroma interplay. In vivo experiments were performed using a xenograft CCA model. ZEB1 expression in tumor cells of human iCCA was associated with undifferentiated tumor and vascular invasion. In vitro, ZEB1 promoted epithelial-mesenchymal transition and stemness in tumor cells, leading to cell migration and spheroid formation. In vivo, ZEB1-overexpressing CCA cells formed larger tumors with more abundant stroma. Expression of cellular communication network factor 2 (CCN2, encoding connective tissue growth factor [CTGF]) was increased in tumor cells from ZEB1-overexpressing xenografts and correlated with ZEB1 expression in human tumors. In vitro, CM from ZEB1-overexpressing tumor cells or recombinant CTGF induced myofibroblast proliferation. ZEB1 was also expressed by CAFs in human CCA, and its expression correlated with CCN2 in myofibroblasts and CCA stroma. In mice, cotransplantation of CCA cells with ZEB1-depleted myofibroblasts reduced CCA progressiveness compared to CCA cells/ZEB1-expressing myofibroblasts. Furthermore, ZEB1 controls the expression of paracrine signals (i.e., HGF and IL6) in tumor cells and myofibroblasts. CONCLUSIONS: ZEB1 plays a key role in CCA progression by regulating tumor cell-CAF crosstalk, leading to tumor dedifferentiation and CAF activation.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Desdiferenciação Celular , Colangiocarcinoma/metabolismo , Comunicação Parácrina , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Neoplasias dos Ductos Biliares/patologia , Fibroblastos Associados a Câncer/patologia , Colangiocarcinoma/patologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Células Estromais
7.
Liver Int ; 42(1): 233-248, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478594

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a form of primary liver cancer with limited therapeutic options. Recently, cancer stem cells (CSCs) have been proposed as a driving force of tumour initiation and dissemination, thus representing a crucial therapeutic target. The protease inhibitor SerpinB3 (SB3) has been identified in several malignancies including hepatocellular carcinoma. SB3 has been involved in the early events of hepatocarcinogenesis and is highly expressed in hepatic progenitor cells and in a mouse model of liver progenitor cell activation. However, only limited information on the possible role of SB3 in CCA stem-like compartment is available. METHODS: Enrichment of CCA stem-like subset was performed by sphere culture (SPH) in CCA cell lines (CCLP1, HUCCT1, MTCHC01 and SG231). Quantitative RT-PCR and Western blotting were used to detect SB3 in both SPH and parental monolayer (MON) cells. Acquired CSC-like features were analysed using an endogenous and a paracrine in vitro model, with transfection of SB3 gene or addition of recombinant SB3 to cell medium respectively. SB3 tumorigenic role was explored in an in vivo mouse model of CCA by subcutaneous injection of SB3-transfected MON (MONSB3+ ) cells in immune-deficient NOD-SCID/IL2Rgnull  (NSG) mice. SB3 expression in human CCA sections was investigated by immunohistochemistry. Overall survival (OS) and time to recurrence (TTR) analyses were carried out from a transcriptome database of 104 CCA patients. RESULTS: SB3, barely detected in parental MON cells, was overexpressed in the same CCA cells grown as 3D SPH. Notably, MONSB3+ showed significant overexpression of genes associated with stemness (CD24, CD44, CD133), pluripotency (c-MYC, NOTCH1, STAT3, YAP, NANOG, BMI1, KLF4, OCT4, SOX2), epithelial mesenchymal transition (ß-catenin, SLUG) and extracellular matrix remodelling (MMP1, MMP7, MMP9, ADAM9, ADAM10, ADAM17, ITGB3). SB3-overexpressing cells showed superior spherogenic capacity and invasion ability compared to control. Importantly, MONSB3+ exhibited activation of MAP kinases (ERK1/2, p38, JNK) as well as phosphorylation of NFκB (p65) in addition to up-regulation of the proto-oncogene ß-catenin. All these effects were reversed after transient silencing of SB3. According to the in vitro finding, MONSB3+ cells retained high tumorigenic potential in NSG mice. SB3 overexpression was observed in human CCA tissues and analysis of OS as well as TTR indicated a worse prognosis in SB3+ CCA patients. CONCLUSION: These findings indicate a SB3 role in mediating malignant phenotype of CCA and identify a new therapeutic target.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Hepáticas , Proteínas ADAM/metabolismo , Animais , Antígenos de Neoplasias , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases , Serpinas
8.
Br J Cancer ; 123(1): 72-80, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376891

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer worldwide, as a result of a late diagnosis and limited therapeutic options. Tumour microenvironment (or stroma) plays a key role in cancer onset and progression and constitutes an intrinsic histological hallmark of PDAC. Thus we hypothesised that relevant prognostic biomarkers and therapeutic targets can be identified in the stroma. METHODS: Laser microdissection of the stroma from freshly frozen PDAC was combined to gene expression profiling. Protein expression of candidate biomarkers was evaluated by immunohistochemistry on tissue microarrays (n = 80 tumours) and by ELISA in plasma samples (n = 51 patients). RESULTS: A signature made of 1256 genes that significantly discriminate the stroma from the non-tumour fibrous tissue was identified. Upregulated genes were associated with inflammation and metastasis processes and linked to NF-Kappa B and TGFß pathways. TMA analysis validated an increased expression of SFN, ADAMTS12 and CXCL3 proteins in the stroma of PDAC. Stromal expression of SFN was further identified as an independent prognostic factor of overall (p = 0.003) and disease-free survival (DFS) (p = 0.034). SFN plasma expression was significantly associated with reduced DFS (p = 0.006). CONCLUSIONS: We demonstrated that gene expression changes within the stroma of PDAC correlate with tumour progression, and we identified Stratifin as a novel independent prognostic biomarker.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Células Estromais/metabolismo , Proteínas 14-3-3/genética , Proteínas ADAMTS/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Quimiocinas CXC/genética , Intervalo Livre de Doença , Exorribonucleases/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Microdissecção e Captura a Laser , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Prognóstico , Transdução de Sinais , Células Estromais/patologia , Microambiente Tumoral/genética , Fator de Necrose Tumoral alfa/genética
9.
Hepatology ; 69(1): 222-236, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30014484

RESUMO

Transforming growth factor (TGF)-ß suppresses early hepatocellular carcinoma (HCC) development but triggers pro-oncogenic abilities at later stages. Recent data suggest that the receptor tyrosine kinase Axl causes a TGF-ß switch toward dedifferentiation and invasion of HCC cells. Here, we analyzed two human cellular HCC models with opposing phenotypes in response to TGF-ß. Both HCC models showed reduced proliferation and clonogenic growth behavior following TGF-ß stimulation, although they exhibited differences in chemosensitivity and migratory abilities, suggesting that HCC cells evade traits of anti-oncogenic TGF-ß. Transcriptome profiling revealed differential regulation of the chemokine CXCL5, which positively correlated with TGF-ß expression in HCC patients. The expression and secretion of CXCL5 was dependent on Axl expression, suggesting that CXCL5 is a TGF-ß target gene collaborating with Axl signaling. Loss of either TGF-ß or Axl signaling abrogated CXCL5-dependent attraction of neutrophils. In mice, tumor formation of transplanted HCC cells relied on CXCL5 expression. In HCC patients, high levels of Axl and CXCL5 correlated with advanced tumor stages, recruitment of neutrophils into HCC tissue, and reduced survival. Conclusion: The synergy of TGF-ß and Axl induces CXCL5 secretion, causing the infiltration of neutrophils into HCC tissue. Intervention with TGF-ß/Axl/CXCL5 signaling may be an effective therapeutic strategy to combat HCC progression in TGF-ß-positive patients.


Assuntos
Carcinoma Hepatocelular/imunologia , Quimiocina CXCL5/fisiologia , Neoplasias Hepáticas/imunologia , Infiltração de Neutrófilos , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Humanos , Camundongos , Células Tumorais Cultivadas , Receptor Tirosina Quinase Axl
10.
Curr Opin Gastroenterol ; 36(2): 57-62, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31895230

RESUMO

PURPOSE OF REVIEW: Cholangiocarcinoma (CCA) are heterogeneous tumors that arise from the malignant transformation of cholangiocytes along the biliary tree. CCA heterogeneity occurs at multiple levels and results in resistance to therapy and poor prognosis. Here, we review the molecular classification of CCA by focusing on the latest progresses based on genetic, epigenetic, transcriptomic and proteomic profiles. In addition, we introduce the emerging field of radiogenomics. RECENT FINDINGS: Genome-wide integrative omics approaches have been widely reported by using large cohorts of CCA patients. Morphomolecular correlations have been established, including enrichment of FGFR2 gene fusions and IDH1/2 mutations in iCCA. A specific IDH mutant iCCA subtype displays high mitochondrial and low chromatin modifier expression linked to ARID1A promoter hypermethylation. Examples of translation of these classifications for the management of CCA have also been reported, with prediction of drug efficacy based on genetic alterations. SUMMARY: Although there is currently no international consensus on CCA morphomolecular classification, the recent initiatives developed under the umbrella of The European Network for the Study of Cholangiocarcinoma (ENSCCA) should favor new collaborative research. Identifying distinct molecular subgroups and developing appropriate targeted therapies will improve the clinical outcome of patients with CCA.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/classificação , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/classificação , Colangiocarcinoma/patologia , Humanos
11.
Eur J Nutr ; 59(4): 1619-1632, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31161349

RESUMO

PURPOSE: Several clinical studies suggested that light-to-moderate alcohol intake could alleviate nonalcoholic fatty liver disease (NAFLD), but the underlying mechanism is still poorly understood. METHODS: Mice fed a high-fat diet (HFD) were submitted or not to moderate ethanol intake for 3 months (ca. 10 g/kg/day) via drinking water. Biochemical, analytical and transcriptomic analyses were performed in serum and liver. RESULTS: Serum ethanol concentrations in ethanol-treated HFD mice comprised between 0.5 and 0.7 g/l throughout the experiment. NAFLD improvement was observed in ethanol-treated HFD mice as assessed by reduced serum transaminase activity. This was associated with less microvesicular and more macrovacuolar steatosis, the absence of apoptotic hepatocytes and a trend towards less fibrosis. Liver lipid analysis showed increased amounts of fatty acids incorporated in triglycerides and phospholipids, reduced proportion of palmitic acid in total lipids and higher desaturation index, thus suggesting enhanced stearoyl-coenzyme A desaturase activity. mRNA expression of several glycolytic and lipogenic enzymes was upregulated. Genome-wide expression profiling and gene set enrichment analysis revealed an overall downregulation of the expression of genes involved in collagen fibril organization and leukocyte chemotaxis and an overall upregulation of the expression of genes involved in oxidative phosphorylation and mitochondrial respiratory chain complex assembly. In addition, mRNA expression of several proteasome subunits was upregulated in ethanol-treated HFD mice. CONCLUSIONS: Moderate chronic ethanol consumption may alleviate NAFLD by several mechanisms including the generation of non-toxic lipid species, reduced expression of profibrotic and proinflammatory genes, restoration of mitochondrial function and possible stimulation of proteasome activity.


Assuntos
Dieta Hiperlipídica , Etanol/sangue , Etanol/farmacologia , Ácidos Graxos Monoinsaturados/sangue , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Triglicerídeos/sangue , Animais , Modelos Animais de Doenças , Etanol/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue
12.
Exp Eye Res ; 181: 213-222, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771295

RESUMO

Uveal melanoma is the most common primary ocular neoplasm in adults. It is peculiar for its hematogenous dissemination and its high propensity to spread to the liver. Current treatments rarely prolong patient survival. We hypothesized that metastatic uveal melanoma cells modulate the function of surrounding hepatic stellate cells to facilitate their own growth and survival. This study was conducted to investigate the role of the hepatic microenvironment on uveal melanoma aggressiveness. We demonstrated that the paracrine signaling of surrounding hepatic stellate cells have more transcriptional impact on metastatic uveal melanoma cells. Upregulated transcripts were linked to inflammation and included several interleukins. The uveal melanoma-stellate cell crosstalk induced as well the expression of transmembrane integrins. In addition, the interleukin-6 receptor inhibitor Tocilizumab did not reduce the growth of uveal melanoma cells. Our results provide evidence that inflammatory mediators are key players in the homing of uveal melanoma cells to the liver. The bidirectional crosstalk between uveal melanoma cells and hepatic stellate cells involved pro-fibrogenic interleukins. The inflammatory characteristics of the metastatic microenvironment might offer relevant therapeutic opportunities in uveal melanoma.


Assuntos
Citocinas/genética , Células Estreladas do Fígado/metabolismo , Inflamação/metabolismo , Neoplasias Hepáticas/diagnóstico , Melanoma/metabolismo , RNA Neoplásico/genética , Neoplasias Uveais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Melanoma/patologia , Metástase Neoplásica , Microambiente Tumoral , Neoplasias Uveais/patologia
13.
Clin Sci (Lond) ; 133(21): 2239-2244, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31654054

RESUMO

Cholangiocarcinoma (CCA) is a deadly cancer worldwide associated with limited therapeutic options. A recent study published in Clinical Science by Wang and colleagues [Clin. Sci. (2019) 133(18), 1935-1953] brought new perspectives to CCA management and therapy by focusing on circular RNAs (circRNAs). CircRNAs belong to an emerging class of functional non-coding RNAs (ncRNAs) regulating numerous biological processes. Notably, circRNAs have been associated with cancer onset and progression, although reports in CCA are very limited so far. In this work, the expression of circular RNA circ-0000284 (aka circHIPK3) was specifically elevated in CCA cell lines, human tumor tissues and plasma exosomes. Gain and loss of function approaches were performed to better understand the molecular mechanisms regulated by circ-0000284. Notably, the authors evaluated the role of circ-0000284 as a microRNA (miRNA) sponge. By prediction analysis and functional tests, a direct interaction was demonstrated with miR-637 that targets lymphocyte antigen-6 E (LY6E). Increased expression of circ-0000284 was associated with enhanced migration, invasion and proliferation of CCA cell lines. Interestingly, exosomal-mediated circ-0000284 was reported to exhibit pro-oncogenic effects on surrounding normal cells. Altogether, these data highlight circRNAs not only as new players in CCA pathogenesis but also as promising molecules for innovative non-invasive biomarkers, as circRNAs are enriched and stable in exosomes. Further investigations on extracellular vesicles should provide the necessary tools to improve CCA diagnosis, and move toward targeted-therapies.


Assuntos
Neoplasias dos Ductos Biliares , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma , MicroRNAs , Humanos , RNA Circular
14.
Liver Int ; 39 Suppl 1: 43-62, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30903728

RESUMO

Cholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a minor fraction of cases, therapeutic options in either the adjuvant or advanced setting are limited. The possibility of advancing the efficacy of therapeutic approaches to CCA relies on understanding its molecular pathogenesis and developing rational therapies aimed at interfering with oncogenic signalling networks that drive and sustain cholangiocarcinogenesis. These efforts are complicated by the intricate biology of CCA, which integrates not only the driving force of tumour cell-intrinsic alterations at the genetic and epigenetic level but also pro-tumorigenic cues conveyed to CCA cells by different cell types present in the rich tumour stroma. Herein, we review our current understanding of the mechanistic bases underpinning the activation of major oncogenic pathways causative of CCA pathogenesis. We subsequently discuss how this knowledge is being exploited to implement rationale-based and genotype-matched therapeutic approaches that predictably will radically transform CCA clinical management in the next decade. We conclude by highlighting the mechanisms of therapeutic resistance in CCA and reviewing innovative approaches to combat resistance at the preclinical and clinical level.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistência a Medicamentos , Terapia de Alvo Molecular , Transdução de Sinais , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/genética , Humanos
15.
Br J Cancer ; 119(11): 1358-1366, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30420613

RESUMO

BACKGROUND: Sex-determining region Y-box (SRY-box) containing gene 9 (SOX9) expression confers cancer stem cell features. However, SOX9 function in intrahepatic cholangiocarcinoma (iCCA) is unknown. This study investigated the effects and underlying mechanisms of SOX9 in iCCA. METHODS: SOX9 expression in 59 iCCA patients was examined by immunohistochemistry. The association between SOX9 expression and clinical outcome was evaluated. Gene signature and biological functions of SOX9 in iCCA were examined in vitro. RESULTS: iCCA patients with high SOX9 expression had shorter survival time than those with low SOX9. In patients receiving chemotherapy, median survival time in patients with low and high levels of SOX9 were 62 and 22 months, respectively. In vitro, gemcitabine increased SOX9 expression in iCCA cells. When SOX9 was knocked down, gemcitabine-induced apoptosis was markedly increased. Silencing SOX9 significantly inhibited gemcitabine-induced phosphorylation of checkpoint kinase 1, a key cell cycle checkpoint protein that coordinates the DNA damage response and inhibited the expression of multidrug resistance genes. Microarray analyses showed that SOX9 knockdown in CCA cells altered gene signatures associated with multidrug resistance and p53 signalling. CONCLUSIONS: SOX9 governs the response of CCA cells to chemotherapy. SOX9 is a biomarker to select iCCA patients eligible for efficient chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição SOX9/metabolismo , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Doença Crônica , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Humanos , Hepatopatias/metabolismo , Fatores de Transcrição SOX9/genética , Análise de Sobrevida , Resultado do Tratamento , Gencitabina
16.
J Hepatol ; 68(6): 1203-1213, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29525529

RESUMO

BACKGROUND & AIMS: The Wnt/ß-catenin pathway is the most frequently deregulated pathway in hepatocellular carcinoma (HCC). Inactivating mutations of the gene encoding AXIN1, a known negative regulator of the Wnt/ß-catenin signaling pathway, are observed in about 10% of HCCs. Whole-genome studies usually place HCC with AXIN1 mutations and CTNNB1 mutations in the group of tumors with Wnt/ß-catenin activated program. However, it has been shown that HCCs with activating CTNNB1 mutations form a group of HCCs, with a different histology, prognosis and genomic signature to those with inactivating biallelic AXIN1 mutations. We aimed to elucidate the relationship between CTNNB1 mutations, AXIN1 mutations and the activation level of the Wnt/ß-catenin program. METHODS: We evaluated two independent human HCC datasets for the expression of a 23-ß-catenin target genes program. We modeled Axin1 loss of function tumorigenesis in two engineered mouse models and performed gene expression profiling. RESULTS: Based on gene expression, we defined three levels of ß-catenin program activation: strong, weak or no activation. While more than 80% CTNNB1-mutated tumors were found in the strong or in the weak activation program, most of the AXIN1-mutated tumors (>70%) were found in the subgroup with no activation. We validated this result by demonstrating that mice with a hepatocyte specific AXIN1 deletion developed HCC in the absence of ß-catenin induction. We defined a 329-gene signature common in human and mouse AXIN1 mutated HCC that is highly enriched in Notch and YAP oncogenic signatures. CONCLUSIONS: AXIN1-mutated HCCs occur independently of the Wnt/ß-catenin pathway and involve Notch and YAP pathways. These pathways constitute potentially interesting targets for the treatment of HCC caused by AXIN1 mutations. LAY SUMMARY: Liver cancer has a poor prognosis. Defining the molecular pathways involved is important for developing new therapeutic approaches. The Wnt/ß-catenin pathway is the most frequently deregulated pathway in hepatocellular carcinoma (HCC). Mutations of AXIN1, a member of this pathway, represent about 10% of HCC mutations. Using both human HCC collections and engineered mouse models of liver cancers with AXIN1 mutation or deletion, we defined a common signature of liver tumors mutated for AXIN1 and demonstrate that these tumors occur independently of the activation of the Wnt/ß-catenin pathway.


Assuntos
Proteína Axina/deficiência , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Animais , Proteína Axina/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/genética , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Prognóstico , Receptores Notch/genética , Receptores Notch/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
18.
J Hepatol ; 66(1): 102-115, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27593106

RESUMO

BACKGROUND & AIMS: A therapeutically challenging subset of cells, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may actively shape their tumor-supportive immune niche. METHODS: CCA cells were cultured in 3D conditions to generate spheres. CCA sphere analysis of in vivo tumorigenic-engraftment in immune-deficient mice and molecular characterization was performed. The in vitro and in vivo effect of CCA spheres on macrophage precursors was tested after culturing healthy donor cluster of differentiation (CD)14+ with CCA-sphere conditioned medium. RESULTS: CCA spheres engrafted in 100% of transplanted mice and revealed a significant 20.3-fold increase in tumor-initiating fraction (p=0.0011) and a sustained tumorigenic potential through diverse xenograft-generations. Moreover, CCA spheres were highly enriched for CSC, liver cancer and embryonic stem cell markers both at gene and protein levels. Next, fluorescence-activated cell sorting analysis showed that in the presence of CCA sphere conditioned medium, CD14+ macrophages expressed key markers (CD68, CD115, human leukocyte antigen-D related, CD206) indicating that CCA sphere conditioned medium was a strong macrophage-activator. Gene expression profile of CCA sphere activated macrophages revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated macrophages from CCA resections recapitulated a similar molecular phenotype of in vitro-educated macrophages. Consistent with invasive features, the largest CD163+ set was found in the tumor front of human CCA specimens (n=23) and correlated with a high level of serum cancer antigen 19.9 (n=17). Among mediators released by CCA spheres, only interleukin (IL)13, IL34 and osteoactivin were detected and further confirmed in CCA patient sera (n=12). Surprisingly, a significant association of IL13, IL34 and osteoactivin with sphere stem-like genes was provided by a CCA database (n=104). In vitro combination of IL13, IL34, osteoactivin was responsible for macrophage-differentiation and invasion, as well as for in vivo tumor-promoting effect. CONCLUSION: CCA-CSCs molded a specific subset of stem-like associated macrophages thus providing a rationale for a synergistic therapeutic strategy for CCA-disease. LAY SUMMARY: Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of the key dysregulated immune subtypes responsible for cooperating in supporting tumor initiation may facilitate the development of new therapeutic approaches. Considering that human cholangiocarcinoma represents a clinical emergency, it is essential to move to predictive models in order to understand the adaptive process of macrophage component (imprinting, polarization and maintenance) engaged by tumor stem-like compartment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Macrófagos , Células-Tronco Neoplásicas/fisiologia , Animais , Antígenos CD/análise , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Carcinogênese , Carcinógenos , Colangiocarcinoma/imunologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Humanos , Interleucinas/análise , Macrófagos/metabolismo , Macrófagos/patologia , Glicoproteínas de Membrana/análise , Camundongos
20.
Anesth Analg ; 125(5): 1600-1609, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28857796

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is an aggressive cancer with limited therapeutic options. Retrospective studies have shown that the administration of local anesthetics (LAs) during cancer surgery could reduce cancer recurrence. Besides, experimental studies reported that LAs could inhibit the growth of cancer cells. Thus, the purpose of this study was to investigate the effects of LAs on human HCC cells. METHODS: The effects of 2 LAs (lidocaine and ropivacaine) (10 to 10 M) were studied after an incubation of 48 hours on 2 HCC cell lines, namely HuH7 and HepaRG. Cell viability, cell cycle analysis, and apoptosis and senescence tests were performed together with unsupervised genome-wide expression profiling and quantitative real-time polymerase chain reaction for relevant genes. RESULTS: We showed that LAs decreased viability and proliferation of HuH7 cells (from 92% [P < .001] at 5 × 10 M to 40% [P = .02] at 10 M with ropivacaine and from 87% [P < .001] to 37% [P = .02] with lidocaine) and HepaRG progenitor cells (from 58% at 5 × 10 M [P < .001] to 29% at 10 M [P = .04] with lidocaine and 59% [P < .001] with ropivacaine 5 × 10 M) in concentration-dependent manner. LAs have no effect on well-differentiated HepaRG. Ropivacaine decreased the mRNA level of key cell cycle regulators, namely cyclin A2, cyclin B1, cyclin B2, and cyclin-dependent kinase 1, and the expression of the nuclear marker of cell proliferation MKI67. Lidocaine had no specific effect on cell cycle but increased by 10× the mRNA level of adenomatous polyposis coli (P < .01), which acts as an antagonist of the Wnt/ß-catenin pathway. Both LAs increased apoptosis in Huh7 and HepaRG progenitor cells (P < .01). CONCLUSIONS: The data demonstrate that LAs induced profound modifications in gene expression profiles of tumor cells, including modulations in the expression of cell cycle-related genes that result in a cytostatic effect and induction of apoptosis.


Assuntos
Amidas/farmacologia , Anestésicos Locais/farmacologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Lidocaína/farmacologia , Neoplasias Hepáticas/patologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Caspase 3/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ropivacaina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA