Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Chem ; 62(22): 10362-10375, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31657555

RESUMO

Acylaminobenzothiazole hits were identified as potential inhibitors of Trypanosoma cruzi replication, a parasite responsible for Chagas disease. We selected compound 1 for lead optimization, aiming to improve in parallel its anti-T. cruzi activity (IC50 = 0.63 µM) and its human metabolic stability (human clearance = 9.57 mL/min/g). A total of 39 analogues of 1 were synthesized and tested in vitro. We established a multiparametric structure-activity relationship, allowing optimization of antiparasite activity, physicochemical parameters, and ADME properties. We identified compound 50 as an advanced lead with an improved anti-T. cruzi activity in vitro (IC50 = 0.079 µM) and an enhanced metabolic stability (human clearance = 0.41 mL/min/g) and opportunity for the oral route of administration. After tolerability assessment, 50 demonstrated a promising in vivo efficacy.


Assuntos
Doença de Chagas/tratamento farmacológico , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Administração Oral , Animais , Benzotiazóis/síntese química , Benzotiazóis/química , Cloro/química , Cães , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Microssomos Hepáticos/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/administração & dosagem , Tripanossomicidas/farmacocinética
2.
F1000Res ; 5: 2523, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909576

RESUMO

Background The recent epidemics of Zika virus (ZIKV) implicated it as the cause of serious and potentially lethal congenital conditions such microcephaly and other central nervous system defects, as well as the development of the Guillain-Barré syndrome in otherwise healthy patients. Recent findings showed that anti-Dengue antibodies are capable of amplifying ZIKV infection by a mechanism similar to antibody-dependent enhancement, increasing the severity of the disease. This scenario becomes potentially catastrophic when the global burden of Dengue and the advent of the newly approved anti-Dengue vaccines in the near future are taken into account. Thus, antiviral chemotherapy should be pursued as a priority strategy to control the spread of the virus and prevent the complications associated with Zika. Methods Here we describe a fast and reliable cell-based, high-content screening assay for discovery of anti-ZIKV compounds. This methodology has been used to screen the National Institute of Health Clinical Collection compound library, a small collection of FDA-approved drugs. Results and conclusion From 725 FDA-approved compounds triaged, 29 (4%) were found to have anti-Zika virus activity, of which 22 had confirmed (76% of confirmation) by dose-response curves. Five candidates presented selective activity against ZIKV infection and replication in a human cell line. These hits have abroad spectrum of chemotypes and therapeutic uses, offering valuable opportunities for selection of leads for antiviral drug discovery.

3.
Science ; 348(6239): 1106-12, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26045430

RESUMO

The discovery of Streptomyces-produced streptomycin founded the age of tuberculosis therapy. Despite the subsequent development of a curative regimen for this disease, tuberculosis remains a worldwide problem, and the emergence of multidrug-resistant Mycobacterium tuberculosis has prioritized the need for new drugs. Here we show that new optimized derivatives from Streptomyces-derived griselimycin are highly active against M. tuberculosis, both in vitro and in vivo, by inhibiting the DNA polymerase sliding clamp DnaN. We discovered that resistance to griselimycins, occurring at very low frequency, is associated with amplification of a chromosomal segment containing dnaN, as well as the ori site. Our results demonstrate that griselimycins have high translational potential for tuberculosis treatment, validate DnaN as an antimicrobial target, and capture the process of antibiotic pressure-induced gene amplification.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/uso terapêutico , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA , Modelos Animais de Doenças , Desenho de Fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/uso terapêutico , Estrutura Secundária de Proteína , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
4.
J Med Chem ; 56(6): 2556-67, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23448316

RESUMO

Chagas disease is caused by the intracellular protozoan parasite Trypanosomal cruzi , and current drugs are lacking in terms of desired safety and efficacy profiles. Following on a recently reported high-throughput screening campaign, we have explored initial structure-activity relationships around a class of imidazole-based compounds. This profiling has uncovered compounds 4c (NEU321) and 4j (NEU704), which are potent against in vitro cultures of T. cruzi and are greater than 160-fold selective over host cells. We report in vitro drug metabolism and properties profiling of 4c and show that this chemotype inhibits the T. cruzi CYP51 enzyme, an observation confirmed by X-ray crystallographic analysis. We compare the binding orientation of 4c to that of other, previously reported inhibitors. We show that 4c displays a significantly better ligand efficiency and a shorter synthetic route over previously disclosed CYP51 inhibitors, and should therefore be considered a promising lead compound for further optimization.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Descoberta de Drogas , Esterol 14-Desmetilase/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/metabolismo , Inibidores de 14-alfa Desmetilase/farmacocinética , Absorção , Disponibilidade Biológica , Ligantes , Modelos Moleculares , Conformação Proteica , Esterol 14-Desmetilase/química , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacocinética , Trypanosoma cruzi/enzimologia
5.
PLoS Negl Trop Dis ; 5(8): e1298, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21912715

RESUMO

Novel technologies that include recombinant pathogens and rapid detection methods are contributing to the development of drugs for neglected diseases. Recently, the results from the first high throughput screening (HTS) to test compounds for activity against Trypanosoma cruzi trypomastigote infection of host cells were reported. We have selected 23 compounds from the hits of this HTS, which were reported to have high anti-trypanosomal activity and low toxicity to host cells. These compounds were highly purified and their structures confirmed by HPLC/mass spectrometry. The compounds were tested in vitro, where about half of them confirmed the anti-T. cruzi activity reported in the HTS, with IC50 values lower than 5 µM. We have also adapted a rapid assay to test anti-T. cruzi compounds in vivo using mice infected with transgenic T. cruzi expressing luciferase as a model for acute infection. The compounds that were active in vitro were also tested in vivo using this assay, where we found two related compounds with a similar structure and low in vitro IC50 values (0.11 and 0.07 µM) that reduce T. cruzi infection in the mouse model more than 90% after five days of treatment. Our findings evidence the benefits of novel technologies, such as HTS, for the drug discovery pathway of neglected diseases, but also caution about the need to confirm the results in vitro. We also show how rapid methods of in vivo screening based in luciferase-expressing parasites can be very useful to prioritize compounds early in the chain of development.


Assuntos
Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Ensaios de Triagem em Larga Escala , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/química , Bioensaio/métodos , Doença de Chagas/tratamento farmacológico , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Concentração Inibidora 50 , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA