Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Phys Chem A ; 126(47): 8859-8870, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383692

RESUMO

Interstellar and cometary ices play an important role in the formation of planetary systems around young stars. Their main constituent is amorphous solid water (ASW). Although ASW is widely studied, vibrational energy dissipation and structural changes due to vibrational excitation are less well understood. The hydrogen-bonding network is likely a crucial component in this. Here, we present experimental results on hydrogen-bonding changes in ASW induced by the intense, nearly monochromatic mid-IR free-electron laser (FEL) radiation of the FELIX-2 beamline at the HFML-FELIX facility at the Radboud University in Nijmegen, The Netherlands. Structural changes in ASW are monitored by reflection-absorption infrared spectroscopy and depend on the irradiation history of the ice. The experiments show that FEL irradiation can induce changes in the local neighborhood of the excited molecules due to energy transfer. Molecular dynamics simulations confirm this picture: vibrationally excited molecules can reorient for a more optimal tetrahedral surrounding without breaking existing hydrogen bonds. The vibrational energy can transfer through the hydrogen-bonding network to water molecules that have the same vibrational frequency. We hence expect a reduced energy dissipation in amorphous material with respect to crystalline material due to the inhomogeneity in vibrational frequencies as well as the presence of specific hydrogen-bonding defect sites, which can also hamper the energy transfer.

2.
J Phys Chem A ; 126(14): 2262-2269, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35357188

RESUMO

Amorphous solid water (ASW) is one of the most widely studied solid phase systems. A better understanding of the nature of inter- and intramolecular forces in ASW is, however, still required to correctly interpret the catalytic role of ASW in the formation and preservation of molecular species in environments such as the icy surfaces of Solar System objects, on interstellar icy dust grains, and potentially even in the upper layers of the Earth's atmosphere. In this work, we have systematically exposed porous ASW (pASW) to mid-infrared radiation generated by a free-electron laser at the HFML-FELIX facility in The Netherlands to study the effect of vibrational energy injection into the surface and bulk modes of pASW. During multiple sequential irradiations on the same ice spot, we observed selective effects both at the surface and in the bulk of the ice. Although the density of states in pASW should allow for a fast vibrational relaxation through the H-bonded network, part of the injected energy is converted into structural ice changes as illustrated by the observation of spectral modifications when performing Fourier transform infrared spectroscopy in reflection-absorption mode. Future studies will include the quantification of such effects by systematically investigating ice thickness, ice morphology, and ice composition.

3.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745029

RESUMO

The structure, tautomerization pathways, vibrational spectra, and photochemistry of 2-amino-4-methylthiazole (AMT) molecule were studied by matrix isolation FTIR spectroscopy and DFT calculations undertaken at the B3LYP/6-311++G(3df,3pd) level of theory. The most stable tautomer with the five-membered ring stabilized by two double C=C and C=N bonds, was detected in argon matrices after deposition. When the AMT/Ar matrices were exposed to 265 nm selective irradiation, three main photoproducts, N-(1-sulfanylprop-1-en-2-yl)carbodiimide (fp1), N-(1-thioxopropan-2-yl)carbodiimide (fp2) and N-(2-methylthiiran-2-yl)carbodiimide (fp3), were photoproduced by a cleavage of the CS-CN bond together with hydrogen atom migration. The minor photoreaction caused by the cleavage of the CS-CC bond and followed by hydrogen migration formed 2-methyl-1H-azirene-1-carbimidothioic acid (fp15). We have also found that cleavage of the CS-CN bond followed by disruption of the N-C bond produced cyanamide (fp11) and the C(CH3)=CH-S biradical that transformed into 2-methylthiirene (fp12) and further photoreactions produced 1-propyne-1-thiole (fp13) or methylthioketene (fp14). Cleavage of the CS-CC bond followed by disruption of the N-C bond produced propyne (fp22) and the S-C(NH2)=N biradical that transformed into 3-aminethiazirene (fp23); further photoreactions produced N-sulfanylcarbodiimide (fp25). As a result of these transformations, several molecular complexes were identified as photoproducts besides new molecules in the AMT photolysis process.


Assuntos
Carbodi-Imidas , Hidrogênio , Modelos Moleculares , Fotoquímica , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Phys Chem Chem Phys ; 21(3): 1277-1284, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30569059

RESUMO

Aggregates of pyrrole with nitrogen are studied by Fourier transform infrared spectroscopy in supersonic jet expansions as well as in neon, argon and nitrogen cryomatrices. The NH stretching vibration undergoes a significant downshift upon switching from isolated gas phase conditions to bulk nitrogen matrices, which can be reconstructed incrementally by stepwise cluster formation with an increasing number of nitrogen molecules both in supersonic expansions and neon or argon matrices. The modelling of the bulk matrix shift by finite cluster theory remains an interesting challenge. Self-aggregation of pyrrole also yields the first spectra of the homodimer and -trimer in a neon matrix, showing particularly small (up to 10 cm-1) deviations from the isolated gas phase values.

5.
J Phys Chem A ; 123(16): 3518-3534, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30920833

RESUMO

The infrared gas-phase absorption spectrum of methane was used to determine its Clapeyron solid-gas equilibrium curve in the 40-77 K temperature range. For comparative purposes and to obtain more reliable results, two different optical experimental setups were used. At higher temperatures (53-77 K), a single pass cryogenically cooled cell was coupled to a standard low-resolution Fourier transform infrared spectrometer. The second system was a state-of-the-art vertical-external-cavity surface-emitting laser tunable source operating at around 2.3 µm, combined with a 7 m path Herriott cell, to record methane absorption features down to 40 K. From the measurements, the vapor pressure curve ln( p/Pa) = -(1191.92 ± 8.92)/( T/K) + (22.49 ± 0.16) was derived in the range 40-77 K. This corresponds to a value of 9910 ± 75 J mol-1 for the sublimation enthalpy. The relation was validated down to 40 K, increasing our knowledge of the saturation pressure by 2 orders of magnitude. Data were compared with available pressure measurements from the literature, obtained by manometric or mass spectrometry techniques, and the sublimation enthalpy was compared with a thermodynamic approach based on heat capacity measurements in the solid and gas phases.

6.
Phys Chem Chem Phys ; 18(36): 25637-25644, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711521

RESUMO

Ab initio calculations predict that pyridine (Py) can act as a photo-catalyst to split water by the absorption of a UV photon following the reaction Py-H2O + hν → PyH˙ + OH˙. To test this prediction, we performed two types of experiments: in the first, we characterize the electronic spectroscopy of the PyH˙ radical in the gas phase. In the second, we evidence the reaction through the UV excitation of molecular Py-(H2O)n clusters obtained in a supersonic expansion and monitoring the PyH˙ reaction product. The results show unambiguously that PyH˙ is produced, and thus that water is split using pyridine as a photo-catalyst.

7.
Phys Chem Chem Phys ; 17(14): 9429-35, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25766969

RESUMO

Amorphous solid water (ASW) is one of the most widely studied molecular systems because of its importance in the physics and chemistry of the interstellar medium and the upper layers of the Earth's atmosphere. Although the global structure of this material, i.e. the bulk and the surface, is well characterised, we are far from having an overall understanding of the changes induced upon chemical or physical perturbation. More specifically, the behaviour of the surface and the immediate sublayers upon mid-infrared irradiation must be understood due to its direct effect on the adsorption capacities of the ASW surface. Small molecules can accrete or form at the surface, adsorbed on the dangling OH groups of surface water molecules. This behaviour allows further reactivity which, in turn, could lead to more complex molecular systems. We have already demonstrated that selective IR irradiations of surface water molecules induce a modification of the surface and the production of a new monomer species which bonds to the surface via its two electronic doublets. However, we did not probe the structure of the dangling bands, namely their homogeneity or inhomogeneity. The structure and orientation of these surface molecules are closely linked to the way the surface can relax its vibrational energy. In this work, we have focussed our attention on the two dH dangling bonds, carrying out a series of selective irradiations which reveal the inhomogeneity of these surface modes. We have also studied the effects of irradiation duration on the surface reorientation, determining that the maximum photoinduced isomerisation yield is ∼15%.

8.
Phys Chem Chem Phys ; 12(29): 8201-7, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20419173

RESUMO

Proton tunneling between the two equivalent structures of malonaldehyde through a substantial barrier is accelerated by more than a factor of 3 to approximately 0.24 ps by OH-bend excitation in phase with suitable motions of the molecular backbone. This is derived from a combined FTIR and Raman spectroscopy study in supersonic jets and rare gas matrices and compared to previous theoretical predictions.

9.
J Am Chem Soc ; 130(10): 2974-83, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18281982

RESUMO

The dynamics of the enolic form of acetylacetone (E-AcAc) was investigated using a femtosecond pump-probe experiment. The pump at 266 nm excited E-AcAc in the first bright state, S2(pi pi*). The resulting dynamics was probed by multiphoton ionization at 800 nm. It was investigated for 80 ps on the S2(pi pi*) and S1(n pi*) potential energy surfaces. An important step is the transfer from S2 to S1 that occurs with a time constant of 1.4 +/- 0.2 ps. Before, the system had left the excitation region in 70 +/- 10 fs. An intermediate step was identified when E-AcAc traveled on the S2 surface. Likely, it corresponds to an accidental resonance in the detection scheme that is met along this path. More importantly, some clues are given that an intramolecular vibrational energy relaxation is observed, which transfers excess vibrational energy from the enolic group O-H to the other modes of the molecule. The present multistep evolution of excited E-AcAc probably also describes, at least qualitatively, the dynamics of other electronically excited beta-diketones.


Assuntos
Pentanonas/química , Teoria Quântica , Ligação de Hidrogênio , Estrutura Molecular , Fatores de Tempo
10.
Chemphyschem ; 9(12): 1774-80, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18613199

RESUMO

We study the structure and photochemistry of the glyoxal-methanol system (G-MeOH) by means of FTIR matrix isolation spectroscopy and ab initio calculations. The FTIR spectra show that the non-hydrogen-bonded complex, G-MeOH-1, is present in an inert environment of solid argon. MP2/aug-cc-pVDZ calculations indicate that G-MeOH-1 is the most stable complex among the five optimized structures. The interaction energy partitioned according to the symmetry-adapted perturbation theory (SAPT) scheme demonstrates that the dispersion energy gives a larger contribution to the stabilization of a non-hydrogen-bonded G-MeOH-1 complex than compared to the hydrogen-bonded ones. The irradiation of G-MeOH-1 with the filtered output of a mercury lamp (lambda>370 nm) leads to its photo-conversion into the hydroxyketene-methanol complex HK-MeOH-1. The identity of HK-MeOH-1 is confirmed by both FTIR spectroscopy and MP2/aug-cc-pVDZ calculations. An experiment with deuterated methanol (CH(3)OD) evidences that hydroxyketene is formed in a photo-induced hydrogen exchange reaction between glyoxal and methanol. The pathway for the photo-conversion of G-MeOH-1 to HK-MeOH-1 is studied by a coupled-cluster method [CR-CC(2,3)]. The calculations confirm our experimental findings that the reaction proceeds via hydrogen atom exchange between the OH group of methanol and CH group of glyoxal.

11.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 5): 761-765, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850108

RESUMO

In the title compound, C16H9FO4, (I), the benzene ring is oriented at an acute angle of 59.03 (15)° relative to the coumarin plane (r.m.s deviation = 0.009 Å). This conformation of (I) is stabilized by an intra-molecular C-H⋯O hydrogen bond, which closes a five-membering ring. In the crystal, mol-ecules of (I) form infinite zigzag chains along the b-axis direction, linked by C-H⋯O hydrogen bonds. Furthermore, the crystal structure is supported by π-π stacking inter-actions between neighbouring pyrone and benzene or coumarin rings [centroid-centroid distances in the range 3.5758 (18)-3.6115 (16) Å], as well as C=O⋯π inter-actions [O⋯centroid distances in the range 3.266 (3)-3.567 (3) Å]. The theoretical data for (I) obtained from quantum chemical calculations are in good agreement with the observed structure, although the calculated C-O-C-C torsion angle between the coumarin fragment and the benzene ring (73.7°) is somewhat larger than the experimental value [63.4 (4)°]. Hirshfeld surface analysis has been used to confirm and qu-antify the supra-molecular inter-actions.

12.
Phys Chem Chem Phys ; 10(9): 1292-7, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18292864

RESUMO

The complex formed between water and tetrafluoromethane has been studied by infrared matrix isolation spectroscopy and ab initio calculations. The geometries of the CF4-H2O complexes were optimized in two steps at the MP2/aug-cc-pVTZ level of theory. The structure found at this level was reoptimized on the CP-corrected potential energy surface. The interaction energy was partitioned according to the SAPT scheme and the topological analysis of the electron density was performed. The optimized structure corresponds to the nonhydrogen bonded complex with an oxygen atom of water oriented toward the carbon atom of CF4. The infrared spectra of CF4-H2O /Ne(Ar) matrices demonstrate the presence of a well defined CF4-H2O structure in accord with theoretical prediction. Two complex vibrations were identified in the spectra of neon matrices and four vibrations were observed in the spectra of argon matrices. The available experimental data are in accord with the CP-corrected calculated data.


Assuntos
Fluorocarbonos/química , Água/química , Argônio/química , Simulação por Computador , Modelos Moleculares , Estrutura Molecular , Neônio/química , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Vibração
13.
J Phys Chem A ; 109(49): 11155-62, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16331898

RESUMO

The UV isomerization of formamide (HCONH2) trapped in xenon, nitrogen, argon, and neon cryogenic matrices has been monitored by Fourier transform infrared (FT-IR) spectroscopy. Formamide monomer is the only species present in the matrices after deposition; when UV-selective irradiation was carried out at 240 nm, the n --> pi transition allowed us to observe the formation of several isomers of formimidic acid [H(OH)C=NH]. On these latter species, we carried out selective IR irradiation of their OH stretching mode and compared the experimental and theoretical (B3LYP/6-311+G(2d,2p)) sets of bands. This study allowed us to characterize for the first time all the isomers of formimidic acid. We have then studied the vacuum UV photodecomposition (lambda > 160 nm) of this molecule at 10 K in argon and xenon matrices. Several primary photoproducts such as HCN.H2O, HNC.H2O, and HNCO.H2 complexes, yielded by dehydration and dehydrogenation processes, were characterized.

14.
J Chem Phys ; 121(6): 2578-90, 2004 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-15281856

RESUMO

Excitation of the 7-hydroxyquinoline(NH(3))(3) [7HQ(NH(3))(3)] cluster to the S(1) (1)pi pi(*) state results in an O-H-->NH(3) hydrogen atom transfer (HAT) reaction. In order to investigate the entrance channel, the vibronic S(1)<-->S(0) spectra of the 7HQ.(NH(3))(3) and the d(2)-7DQ.(ND(3))(3) clusters have been studied by resonant two-photon ionization, UV-UV depletion and fluorescence techniques, and by ab initio calculations for the ground and excited states. For both isotopomers, the low-frequency part of the S(1)<--S(0) spectra is dominated by ammonia-wire deformation and stretching vibrations. Excitation of overtones or combinations of these modes above a threshold of 200-250 cm(-1) for 7HQ.(NH(3))(3) accelerates the HAT reaction by an order of magnitude or more. The d(2)-7DQ.(ND(3))(3) cluster exhibits a more gradual threshold from 300 to 650 cm(-1). For both isotopomers, intermolecular vibrational states above the threshold exhibit faster HAT rates than the intramolecular vibrations. The reactivity, isotope effects, and mode selectivity are interpreted in terms of H atom tunneling through a barrier along the O-H-->NH(3) coordinate. The barrier results from a conical intersection of the optically excited (1)pi pi(*) state with an optically dark (1)pi sigma(*) state. Excitation of the ammonia-wire stretching modes decreases both the quinoline-O-H...NH(3) distance and the energetic separation between the (1)pi pi(*) and (1)pi sigma(*) states, thereby increasing the H atom tunneling rate. The intramolecular vibrations change the H bond distance and modulate the (1)pi pi(*)<-->(1)pi sigma(*) interaction to a much smaller extent.


Assuntos
Amônia/química , Hidrogênio/química , Hidroxiquinolinas/química , Modelos Químicos , Modelos Moleculares , Prótons , Simulação por Computador , Conformação Molecular , Transição de Fase , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA