Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Angew Chem Int Ed Engl ; 62(51): e202307718, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37782257

RESUMO

The simultaneous capture and detection of biomolecules is crucial for revolutionizing bioanalytical platforms in terms of portability, response time and cost-efficiency. Herein, we demonstrate how the sensitivity to external stimuli and changes in the local electronic environment of silver clusters lead to an advantageous biosensing platform based on the fluorometric response of bioactive luminescent silver clusters (BioLuSiC) confined in faujasite X zeolites functionalized with antibodies. The photoluminescence response of BioLuSiC was enhanced upon immunocomplex formation, empowering a wash-free and quick biodetection system offering optimal results from 5 min. Proteins and pathogens (immunoglobulin G and Escherichia coli) were targeted to demonstrate the biosensing performance of BioLuSiC, and a human serum titration assay was also established. BioLuSiC will pave the way for innovative bioanalytical platforms, including real-time monitoring systems, point-of-care devices and bioimaging techniques.


Assuntos
Técnicas Biossensoriais , Zeolitas , Humanos , Prata , Escherichia coli , Luminescência , Imunoglobulina G , Técnicas Biossensoriais/métodos
2.
Small ; 16(26): e2002063, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32484276

RESUMO

Herein, AlKα X-rays are used to drive the growth of luminescent silver clusters in zeolites. The growth of the silver species is tracked using Auger spectroscopy and fluorescence microscopy, by monitoring the evolution from their ions to luminescent clusters and then metallic, dark nanoparticles. It is shown that the growth rate in different zeolites is determined by the mobility of the silver ions in the framework and that the growth dynamics in calcined samples obeys the Hill-Langmuir equation for noncooperative binding. Comparison of the optical properties of X-ray-grown silver clusters with silver clusters formed by standard heat treatment indicates that the latter have a higher specificity toward the formation of luminescent clusters of a specific (small) nuclearity, whereas the former produce a wide distribution of cluster species as well as larger nanoparticles.

3.
Acc Chem Res ; 50(9): 2353-2361, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28862837

RESUMO

Interest for functional silver clusters (Ag-CLs) has rapidly grown over years due to large advances in the field of nanoscale fabrication and materials science. The continuous development of strategies to fabricate small-scale silver clusters, together with their interesting physicochemical properties (molecule-like discrete energy levels, for example), make them very attractive for a wide variety of applied research fields, from biotechnology and the environmental sciences to fundamental chemistry and physics. Apart from useful catalytic properties, silver clusters (Agn, n < 10) were recently shown to also exhibit exceptional optical properties. The optical properties and performance of Ag-CLs offer strong potential for their integration into appealing micro(nano)-optoelectronic devices. To date, however, the rational design and directed synthesis of Ag-CLs with specific functionalities has remained elusive. The inability for rational design stems mainly from a lack of understanding of their novel atomic-scale phenomena. This is because accurately studying silver cluster systems at such a scale is hindered by the perturbations introduced during exposure to various experimental probes. For instance, silver possesses a strong tendency to cluster and form ever-larger Ag aggregates while probed with high-energy electron beams and X-ray irradiation. As well, there exists a need to provide a stabilizing environment for which Agnδ+ clusters can persist, setting up a complex interacting guest-host system, as isolated silver clusters are confined within a suitable hosting medium. Fundamental research into Agnδ+ formation mechanisms and their important optical properties is paramount to establishing truly informed synthesis protocols. Over recent years, we have developed several protocols for the ship-in-a-bottle synthesis of highly luminescent Ag-CLs within the microporous interiors of zeolite frameworks. This approach has yielded materials displaying a wide variety of optical properties, offering a spectrum of possible applications, from nano(micro)photonic devices to smart luminescent labels and sensors. The versatility of the Ag-zeolite multicomponent system is directly related to the intrinsic and complex tunability of the system as a whole. There are several key zeolite parameters that confer properties to the clusters, namely, the framework Si/Al ratio, choice of counterbalancing ions, silver loading, and zeolite topology, and cannot be overlooked. This Account is intended to shed light on the current state-of-the-art of luminescent Ag-CLs confined in zeolitic matrices, emphasizing the use of combinatorial approaches to overcome problems associated with the correct characterization and correlation of their structural, electronic, and photoluminescence properties, all to establish the important design principles for developing functional silver-zeolite-based materials. Additionally, examples of emerging applications and future perspectives for functional luminescent Ag-zeolite materials are addressed in this Account.

4.
Nat Mater ; 15(9): 1017-22, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27270964

RESUMO

The integration of metal atoms and clusters in well-defined dielectric cavities is a powerful strategy to impart new properties to them that depend on the size and geometry of the confined space as well as on metal-host electrostatic interactions. Here, we unravel the dependence of the electronic properties of metal clusters on space confinement by studying the ionization potential of silver clusters embedded in four different zeolite environments over a range of silver concentrations. Extensive characterization reveals a strong influence of silver loading and host environment on the cluster ionization potential, which is also correlated to the cluster's optical and structural properties. Through fine-tuning of the zeolite host environment, we demonstrate photoluminescence quantum yields approaching unity. This work extends our understanding of structure-property relationships of small metal clusters and applies this understanding to develop highly photoluminescent materials with potential applications in optoelectronics and bioimaging.

5.
Nanotechnology ; 26(25): 255703, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26031426

RESUMO

The photoluminescence (PL) of colloidal quantum dots (QDs) is known to be sensitive to the solution pH. In this work we investigate the role played by the organic coating in determining the pH-dependent PL. We compare two types of CdSe/ZnS QDs equipped with different organic coatings, namely dihydrolipoic acid (DHLA)-capped QDs and phospholipid micelle-encapsulated QDs. Both QD types have their PL intensity quenched at acidic pH values, but they differ in terms of the reversibility of the quenching process. For DHLA-capped QDs, the quenching is nearly irreversible, with a small reversible component visible only on short time scales. For phospholipid micelle-encapsulated QDs the quenching is notably almost fully reversible. We suggest that the surface passivation by the organic ligands is reversible for the micelle-encapsulated QDs. Additionally, both coatings display pH-dependent spectral shifts. These shifts can be explained by a combination of irreversible processes, such as photo-oxidation and acid etching, and reversible charging of the QD surface, leading to the quantum-confined Stark effect (QCSE), the extent of each effect being coating-dependent. At high ionic strengths, the aggregation of QDs also leads to a spectral (red) shift, which is attributable to the QCSE and/or electronic energy transfer.

6.
Phys Chem Chem Phys ; 16(35): 18690-3, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25083739

RESUMO

Here we present a simple route to produce well-defined photo-reduced silver nanoparticles on TiO2 containing zeolites. We used natural and artificial irradiation sources to study their effect on the particle size distribution. The samples were investigated by electron microscopy, X-ray diffraction, fluorescence microscopy and UV-Vis diffuse reflectance spectroscopy.

7.
Materials (Basel) ; 15(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234094

RESUMO

A facile and versatile process to produce lithium metasilicate (Li2SiO3) from non-conventional silicon sources (two different sand sources from the central area of México) was developed. The synthesis protocol based on a solid-state reaction followed by a hydrothermal treatment resulted in highly pure lithium metasilicate, as corroborated by XRD, SEM-EDS, and XPS analysis. Furthermore, lithium metasilicate was used as a heterogeneous catalyst for biodiesel production from soybean oil, where conversion yields were compared according to the silicon source used (based on chemical purity, stability, and yield efficiency). The best performing metasilicate material displayed a maximum of 95.5% of biodiesel conversion under the following conditions: 180 min, 60 °C, 5% catalyst (wt./wt., catalyst-to-oil), and 18:1 (methanol:oil). This contribution opens up alternatives for the production of lithium metasilicate using non-conventional precursors and its use as an alternative catalyst in biodiesel production, displaying better chemical stability against humidity than conventional heterogeneous catalysts.

8.
Environ Sci Pollut Res Int ; 29(28): 42768-42779, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35091948

RESUMO

The synthesis and characterization of sodium titanates (ST), and their evaluation in the photocatalytic reduction of nitric oxide (NO) are described herein. The materials were synthesized by a hydrothermal route using 5 M NaOH as the mineralizer agent and a TiO2 content of 0.06 mg/mL (expressed as the mass ratio of TiO2/mL of NaOH), at 170 °C for 48 h, resulting in sodium tri- and hexa-titanates. A nanotubular morphology was observed for the ST, as proved by scanning electron microscopy (SEM); a subsequent heat-treatment at 400 °C allowed a complete transformation of sodium tri- to hexa-titanates and an increase in bandgap. The obtained ST were impregnated with Ag+ and Zn+ cations, ST-Ag and ST-Zn, respectively, to tune the materials' bandgap. XPS analysis of the ST-Ag materials showed evidence of metallic Ag, pointing to the formation of silver nanoparticles, whereas for ST-Zn oxide phases were mainly spotted. The materials were evaluated for the photocatalytic reduction of NO using a reactor fed with a continuous flow rate of NO, generated in situ at a flow of 280 mL/min using nitrogen and a 253-nm UV irradiation source. The photocatalytic tests showed that pristine ST (tri- and hexa-titanates) displayed better performance in the reduction of NO with respect to the impregnated samples (ST-Ag, ST-Zn). Maximum degradation efficiencies of 80% were achieved when 1 g of photocatalyst was used with a flow of 280 mL/min and a 253 nm UV lamp.


Assuntos
Nanopartículas Metálicas , Prata , Catálise , Óxido Nítrico , Óxidos , Sódio , Hidróxido de Sódio , Titânio
9.
Chem Commun (Camb) ; 58(5): 677-680, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34919109

RESUMO

In this study, a water-stable microcrystalline bioMOF was synthesized, characterized, and loaded with silver ions or highly emissive rare earth (RE) metals such as Eu3+/Tb3+. The obtained materials were used as active layers in a proof-of-concept sustainable light-emitting device, highlighting the potential of bioMOFs in optoelectronic applications.


Assuntos
Estruturas Metalorgânicas
10.
Chem Commun (Camb) ; 57(90): 11952-11955, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699581

RESUMO

Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.

11.
ACS Omega ; 6(7): 4921-4931, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644599

RESUMO

Novel mixed matrix membranes (MMMs) based on fluoropolymers with m- and p-terphenyl fragments and NaX zeolites were prepared. The fluoropolymers were synthesized by a one-pot, room-temperature, metal-free superacid-catalyzed stoichiometric and nonstoichiometric step polymerization of 2,2,2-trifluoroacetophenone with two multiring aromatic nonactivated hydrocarbons (p-terphenyl and m-terphenyl). MMMs were characterized by scanning electron microscopy (SEM) and infrared (Fourier transform infrared (FTIR)) spectroscopy and used in gas permeability tests. SEM analysis showed interfacial voids in MMMs prepared in N-methyl-2-pyrrolidone (NMP), The interfacial adhesion in the polymer-zeolite system was considerably improved when chloroform was used as a solvent. Permeability coefficients for pristine polymer membranes were 1.3-fold higher in CHCl3 than in NMP for p-terphenyl fragment and 2.0 times higher in NMP than in CHCl3 for the polymer with m-terphenyl fragment. The incorporation of NaX zeolites in the polymeric matrices improved the gas permeability coefficients compared to the pristine membranes. The effects of polymer architecture, casting solvent, and interaction between the organic matrix and the inorganic particles on the gas separation performance of the developed MMMs were investigated.

12.
J Phys Chem Lett ; 11(24): 10362-10367, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33232165

RESUMO

Layered double perovskites have the potential to further expand the vast space of optoelectronic properties and applications of halide perovskites. Among the ∼60 known members, to date only the ⟨111⟩-oriented layered double perovskites, Cs4Cd1-xMnxBi2Cl12, have shown efficient photoluminescence (PL). The replacement of Bi with Sb in these materials was investigated, resulting in two new families of layered inorganic perovskite alloys with full solubility. The first, Cs4Cd1-xMnxSb2Cl12, exhibits a PL emission at 605 nm ascribed to Mn2+ centers, with a maximum quantum yield of 28.5%. The second, Cs4Cd0.8Mn0.2(Sb1-yBiy)2Cl12, contains a fixed amount of Mn2+ and Cd2+ but variable Sb3+ and Bi3+ concentrations. We observed a decreased efficiency of the Cs4Cd1-xMnxSb2Cl12 family compared to that of Cs4Cd1-xMnxBi2Cl12, which was attributed to a decreased spin-orbit and Jahn-Teller couplings in Sb and the subsequent increased electronic delocalization. The present work lays out a roadmap to achieve high photoluminescence efficiencies in layered double perovskites.

13.
Methods Appl Fluoresc ; 8(2): 024004, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995792

RESUMO

Metal clusters confined inside zeolite materials display remarkable luminescent properties, making them very suitable as potential alternative phosphors in white LED applications. However, up to date, only single-color emitters have been reported for luminescent metal-exchanged zeolites. In this study, we synthesized and characterized white emitting silver-sulfur zeolites, which show a remarkable color tunability upon the incorporation of silver species in highly luminescent sulfur-zeolites. Via a combined steady-state and time-resolved photoluminescence spectroscopy characterization, we suggest that the observed luminescence and tunability arise from the presence of two different species. The first associated to an orange-red emitting silver cluster (Ag-CL), whereas the second is related to a blue-white emitting S-Ag-species. The relative contribution of both luminescent species depends on the synthesis procedure. It was shown that the formation of the blue-white emitting S-Ag-species is favored upon a heat-treatment of the samples.

14.
J Am Chem Soc ; 131(8): 3049-56, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19209854

RESUMO

Thermal treatment of Ag(+)-exchanged zeolites yields discrete highly photostable luminescent clusters without formation of metallic nanoparticles. Different types of emitters with characteristic luminescence colors are observed, depending on the nature of the cocation, the amount of exchanged silver, and the host topology. The dominant emission bands in LTA samples are situated around 550 and 690 nm for the samples with, respectively, low and high silver content, while in FAU-type materials only a broad band around 550 nm is observed, regardless of the degree of exchange. Analysis of the fluorescent properties in combination with ESR spectroscopy suggests that a Ag(6)(+) cluster with doublet electronic ground state is associated with the appearance of the 690-nm emitter, having a decay of a few hundred microseconds. Tentatively, the nanosecond-decaying 550-nm emitter is assigned to the Ag(3)(+) cluster. This new class of photostable luminescent particles with tunable emission colors offers interesting perspectives for various applications such as biocompatible labels for intracellular imaging.


Assuntos
Corantes Fluorescentes/química , Prata/química , Zeolitas/química , Espectroscopia de Ressonância de Spin Eletrônica , Fluorescência , Temperatura Alta , Espectrometria de Fluorescência
15.
ACS Appl Mater Interfaces ; 11(13): 12179-12183, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30880384

RESUMO

In this contribution, we report on the first time use of silver-exchanged zeolites embedded in the nonconductive polystyrene (PS) and their use as hybrid emitters in light-emitting diodes (ZEOLEDs). The turn on voltage and EL intensity are strongly dependent on the concentration of metal clusters. It is shown that the key to optimize this technology is improving the zeolite anode contact. Such an optimized device based on cheap abundant materials could provide an alternative for the commercial phosphor converted LEDs. A ZEOLED with a voltage polarity dependent color is demonstrated.

16.
J Phys Chem Lett ; 9(18): 5344-5350, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130110

RESUMO

The appealing luminescent properties of Ag-zeolites have been shown to be dependent on the local environment of the confined silver clusters. Herein, we shed light on the properties of Ag clusters inside hydrated Linde-type A (LTA) zeolites and relate them to the nature of the host framework when expanded and compressed by the incorporation of Li+ cations and the Ag+ loading. Within this scenario, we measure a strong emission color shift in these materials, which we directly correlate with the fine structure details derived by optical luminescence-detected X-ray absorption in combination with deep UV-Raman spectroscopy and X-ray diffraction. Strong guest-host-guest interactions are revealed to underpin the variations in the optical properties; a modification in the zeolite lattice parameter results in changing bond lengths of the silver cluster. This interplay between the host zeolite and its confined guests can thus be harnessed to easily tune the Ag-zeolites' emission properties.

17.
Nanoscale ; 10(24): 11467-11476, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29888348

RESUMO

Luminescent silver clusters (AgCLs) stabilized inside partially Ag exchanged Na LTA zeolites show a remarkable reversible on-off switching of their green-yellowish luminescence that is easily tuned by a hydration and dehydration cycle, making them very promising materials for sensing applications. We have used a unique combination of photoluminescence (PL), UV-visible-NIR Diffuse Reflectance (DRS), X-ray absorption fine structure (XAFS), Fourier Transform-Infrared (FTIR) and electron spin resonance (ESR) spectroscopies to unravel the atomic-scale structural changes responsible for the reversible optical behavior of the confined AgCLs in LTA zeolites. Water coordinated, diamagnetic, tetrahedral AgCLs [Ag4(H2O)4]2+ with Ag atoms positioned along the axis of the sodalite six-membered rings are at the origin of the broad and intense green-yellowish luminescence in the hydrated sample. Upon dehydration, luminescent [Ag4(H2O)4]2+ clusters are transformed into non-luminescent (dark), diamagnetic, octahedral AgCLs [Ag6(OF)14]2+ with Ag atoms interacting strongly with zeolite framework oxygen (OF) of the sodalite four-membered rings. This highly responsive on-off switching reveals that besides quantum confinement and molecular-size, coordinated water and framework oxygen ligands strongly affect the organization of AgCLs valence electrons and play a crucial role in the opto-structural properties of AgCLs.

18.
Science ; 361(6403): 686-690, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30115807

RESUMO

Silver (Ag) clusters confined in matrices possess remarkable luminescence properties, but little is known about their structural and electronic properties. We characterized the bright green luminescence of Ag clusters confined in partially exchanged Ag-Linde Type A (LTA) zeolites by means of a combination of x-ray excited optical luminescence-extended x-ray absorption fine structure, time-dependent-density functional theory calculations, and time-resolved spectroscopy. A mixture of tetrahedral Ag4(H2O) x2+ (x = 2 and x = 4) clusters occupies the center of a fraction of the sodalite cages. Their optical properties originate from a confined two-electron superatom quantum system with hybridized Ag and water O orbitals delocalized over the cluster. Upon excitation, one electron of the s-type highest occupied molecular orbital is promoted to the p-type lowest unoccupied molecular orbitals and relaxes through enhanced intersystem crossing into long-lived triplet states.

19.
J Vis Exp ; (117)2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911397

RESUMO

Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film.


Assuntos
Monitoramento Ambiental/métodos , Umidade , Luminescência , Nanoestruturas , Prata , Zeolitas
20.
ACS Nano ; 10(8): 7604-11, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27391548

RESUMO

One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster-zeolite composites with tailored luminescent properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA