Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Inorg Chem ; 63(15): 6571-6575, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572833

RESUMO

Structure-porosity relationships for metal-organic polyhedra (MOPs) are hardly investigated because they tend to be amorphized after activation, which inhibits crystallographic characterization. Here, we show a mixed-ligand strategy to statistically distribute two distinct carbazole-type ligands within rhodium-based octahedral MOPs, leading to systematic tuning of the microporosity in the resulting amorphous solids.

2.
J Am Chem Soc ; 145(26): 14456-14465, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350764

RESUMO

Porous liquids (PLs) are attractive materials because of their capability to combine the intrinsic porosity of microporous solids and the processability of liquids. Most of the studies focus on the synthesis of PLs with not only high porosity but also low viscosity by considering their transportation in industrial plants. However, a gap exists between PLs and solid adsorbents for some practical cases, where the liquid characteristics and mechanical stability without leakage are simultaneously required. Here, we fill in this gap by demonstrating a new concept of pore-networked gels, in which the solvent phase is trapped by molecular networks with accessible porosity. To achieve this, we fabricate a linked metal-organic polyhedra (MOPs) gel, followed by exchanging the solvent phase with a bulky liquid such as ionic liquids (ILs); the dimethylformamide solvent trapped inside the as-synthesized gel is replaced by the target IL, 1-butyl-3-methylimidazolium tetrafluoroborate, which in turn cannot enter MOP pores due to their larger molecular size. The remaining volatile solvents in the MOP cavities can then be removed by thermal activation, endowing the obtained IL gel (Gel_IL) with accessible microporosity. The CO2 capacities of the gels are greatly enhanced compared to the neat IL. The exchange with the IL also exerts a positive influence on the final gel performances such as mechanical properties and low volatility. Besides ILs, various functional liquids are shown to be amenable to this strategy to fabricate pore-networked gels with accessible porosity, demonstrating their potential use in the field of gas adsorption or separation.

3.
Chemistry ; 29(32): e202300732, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37022280

RESUMO

Three new ligands containing a bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide unit have been used to assemble lantern-type metal-organic cages with the general formula [Cu4 L4 ]. Functionalisation of the backbone of the ligands leads to distinct crystal packing motifs between the three cages, as observed with single-crystal X-ray diffraction. The three cages vary in their gas sorption behaviour, and the capacity of the materials for CO2 is found to depend on the activation conditions: softer activation conditions lead to superior uptake, and one of the cages displays the highest BET surface area found for lantern-type cages so far.


Assuntos
Metais , Ligantes , Porosidade , Transporte Biológico , Cristalografia por Raios X
4.
Chem Soc Rev ; 51(12): 4876-4889, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35441616

RESUMO

There is growing interest in metal-organic cages (MOCs) as porous materials owing to their processability in solution. The discrete molecular character and surface features of MOCs have a direct impact on the interactions between cages, enabling the final physical state of the materials to be tuned. In this tutorial review, we discuss how to use MOCs as core building units, highlighting the role played by surface functionalisation of MOCs in leading to porous materials in a range of states covering crystalline solids, soft matter, liquids and composites. We finish by providing an outlook on the opportunities for this work to serve as a foundation for the development of increasingly complex functional porous materials structured over various length scales.

5.
J Am Chem Soc ; 144(8): 3626-3636, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179874

RESUMO

Heterogenization of molecular catalysts via their immobilization within extended structures often results in a lowering of their catalytic properties due to a change in their coordination sphere. Metal-organic polyhedra (MOP) are an emerging class of well-defined hybrid compounds with a high number of accessible metal sites organized around an inner cavity, making them appealing candidates for catalytic applications. Here, we demonstrate a design strategy that enhances the catalytic properties of dirhodium paddlewheels heterogenized within MOP (Rh-MOP) and their three-dimensional assembled supramolecular structures, which proved to be very efficient catalysts for the selective photochemical reduction of carbon dioxide to formic acid. Surprisingly, the catalytic activity per Rh atom is higher in the supramolecular structures than in its molecular sub-unit Rh-MOP or in the Rh-metal-organic framework (Rh-MOF) and yields turnover frequencies of up to 60 h-1 and production rates of approx. 76 mmole formic acid per gram of the catalyst per hour, unprecedented in heterogeneous photocatalysis. The enhanced catalytic activity is investigated by X-ray photoelectron spectroscopy and electrochemical characterization, showing that self-assembly into supramolecular polymers increases the electron density on the active site, making the overall reaction thermodynamically more favorable. The catalyst can be recycled without loss of activity and with no change of its molecular structure as shown by pair distribution function analysis. These results demonstrate the high potential of MOP as catalysts for the photoreduction of CO2 and open a new perspective for the electronic design of discrete molecular architectures with accessible metal sites for the production of solar fuels.

6.
J Am Chem Soc ; 143(9): 3562-3570, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33646776

RESUMO

In coordination-based supramolecular materials such as metallogels, simultaneous temporal and spatial control of their assembly remains challenging. Here, we demonstrate that the combination of light with acids as stimuli allows for the spatiotemporal control over the architectures, mechanical properties, and shape of porous soft materials based on metal-organic polyhedra (MOPs). First, we show that the formation of a colloidal gel network from a preformed kinetically trapped MOP solution can be triggered upon addition of trifluoroacetic acid (TFA) and that acid concentration determines the reaction kinetics. As determined by time-resolved dynamic light scattering, UV-vis absorption, and 1H NMR spectroscopies and rheology measurements, the consequences of the increase in acid concentration are (i) an increase in the cross-linking between MOPs; (ii) a growth in the size of the colloidal particles forming the gel network; (iii) an increase in the density of the colloidal network; and (iv) a decrease in the ductility and stiffness of the resulting gel. We then demonstrate that irradiation of a dispersed photoacid generator, pyranine, allows the spatiotemporal control of the gel formation by locally triggering the self-assembly process. Using this methodology, we show that the gel can be patterned into a desired shape. Such precise positioning of the assembled structures, combined with the stable and permanent porosity of MOPs, could allow their integration into devices for applications such as sensing, separation, catalysis, or drug release.


Assuntos
Coloides/química , Géis/química , Estruturas Metalorgânicas/química , Sulfonatos de Arila/química , Sulfonatos de Arila/efeitos da radiação , Coloides/síntese química , Módulo de Elasticidade , Géis/síntese química , Luz , Estruturas Metalorgânicas/síntese química , Polimerização/efeitos da radiação , Porosidade , Ácido Trifluoracético/química
7.
J Am Chem Soc ; 142(32): 13839-13845, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32668902

RESUMO

Reticular framework materials thrive on designability, but unexpected reaction outcomes are crucial in exploring new structures and functionalities. By combining "incompatible" building blocks, we employed geometric frustration in reticular materials leading to emergent structural features. The combination of a pseudo-C5-symmetrical organic building unit based on a pyrrole core with a C4-symmetrical copper paddlewheel synthon led to three distinct frameworks by tuning the synthetic conditions. The frameworks show structural features typical for geometric frustration: self-limiting assembly, internally stressed equilibrium structures, and topological defects in the equilibrium structure, which manifested in formation of a hydrogen-bonded framework, distorted and broken secondary building units, and dangling functional groups, respectively. The influence of geometric frustration on the CO2 sorption behavior and the discovery of a new secondary building unit shows geometric frustration can serve as a strategy to obtain highly complex porous frameworks.

8.
Inorg Chem ; 58(20): 13815-13825, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31588739

RESUMO

The chelating ligand 1,3-bis(tris(hydroxymethyl)methylamino)propane (H6L) has been used to synthesize a family of octanuclear heterometallic complexes with the formula (NMe4)3[Mn4Ln4(H2L)3(H3L)(NO3)12] (Ln = La (1), Ce (2), Pr (3), Nd (4)). Encapsulation by the ligand causes the Mn(III) centers to lie in an unusually distorted (∼C2v) environment, which is shown by density functional theory and complete active space self-consistent field calculations to impact on the magnetic anisotropy of the Mn(III) ion. The theoretical study also supports the experimental observation of a ferromagnetic superexchange interaction between the Mn(III) ions in 1, despite the ions being separated by the diamagnetic La(III) ion. The optical properties of the compounds show that the distortion of the Mn(III) ions leads to three broad absorption bands originating from the transition metal ion, while the Nd(III) containing complex also displays some weak sharp features arising from the lanthanide f-f transitions.

9.
Angew Chem Int Ed Engl ; 58(19): 6347-6350, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848051

RESUMO

Porous molecular cages have a characteristic processability arising from their solubility, which allows their incorporation into porous materials. Attaining solubility often requires covalently bound functional groups that are unnecessary for porosity and which ultimately occupy free volume in the materials, decreasing their surface areas. Here, a method is described that takes advantage of the coordination bonds in metal-organic polyhedra (MOPs) to render insoluble MOPs soluble by reversibly attaching an alkyl-functionalized ligand. We then use the newly soluble MOPs as monomers for supramolecular polymerization reactions, obtaining permanently porous, amorphous polymers with the shape of colloids and gels, which display increased gas uptake in comparison with materials made with covalently functionalized MOPs.

10.
Inorg Chem ; 56(5): 2639-2652, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28198623

RESUMO

Two flexible, branched, and sterically constrained di- and tripodal side arms around a phenol backbone were utilized in ligands H3L1 and H5L2 to isolate {Mn6} and {Mn3} coordination aggregates. 2,6-Bis{(1-hydroxy-2-methylpropan-2-ylimino)methyl}-4-methylphenol (H3L1) gave trinuclear complex [Mn3(µ-H2L1)2(µ1,3-O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1), whereas 2,6-bis[{1-hydroxy-2-(hydroxymethyl)butan-2-ylimino}methyl]-4-methylphenol (H5L2) provided hexanuclear complex [Mn6(µ4-H2L2)2(µ-HL3)2(µ3-OH)2(µ1,3-O2CC2H5)4](ClO4)2·2H2O (2). Binding of acetates and coordination of {H2L1}- provided a linear MnIIIMnIIMnIII arrangement in 1. A MnIII6 fused diadamantane-type assembly was obtained in 2 from propionate bridges, coordination of {H2L2}3-, and in situ generated {HL3}2-. The magnetic characterization of 1 and 2 revealed the properties dominated by intramolecular anti-ferromagnetic exchange interactions, and this was confirmed using density functional theory calculations. Complex 1 exhibited field-induced slow magnetic relaxation at 2 K due to the axial anisotropy of MnIII centers. Both the complexes show effective solvent-dependent catechol oxidation toward 3,5-di-tert-butylcatechol in air. The catechol oxidation abilities are comparable from two complexes of different nuclearity and structure.

11.
Inorg Chem ; 55(20): 10783-10792, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27684055

RESUMO

Four different carboxylato bridges have been efficiently utilized for growth of three tetranuclear nickel(II) complexes [Ni4(µ3-H2L)2(µ3-OH)2(µ1,3-CH3CO2)2](ClO4)2 (1), [Ni4(µ3-H2L)2(µ3-OH)2(µ1,3-C2H5CO2)2](ClO4)2·1/2H2O (2), and [Ni4(µ3-H2L)2(µ3-OH)2(µ1,3-O2C-C6H4-pNO2)2](ClO4)(p-NO2-C6H4-CO2)·DMF·5H2O (3) and one dinuclear nickel(II)-based chain complex {[Ni2(µ-H2L)(µ1,3-O2CCH2Ph)2(H2O)](ClO4)·1/2(CH3OH)}n (4). These were obtained via the reaction of Ni(ClO4)2·6H2O with H3L [2,6-bis((2-(2-hydroxyethylamino)ethylimino)methyl)-4-methylphenol] and RCO2Na (R = CH3,C2H5, p-NO2C6H4, and PhCH2). This family of complexes is developed from {Ni2(µ-H2L)}3+ fragments following self-aggregation. The complexes were characterized by X-ray crystallography and magnetic measurements. The changes from acetate, propionate, and p-nitrobenzoate to phenylacetate groups resulted in two different types of coordination aggregation. These compounds are new examples of [Ni4] and [Ni2]n complexes where organization of the building motifs are guided by the type of the carboxylate groups responsible for in-situ generation and utilization of HO- bridges with alteration in the aggregation process within the same ligand environment. Studies on the magnetic behavior of the compounds reveal that the exchange coupling within 1-4 is predominantly antiferromagnetic in nature.

12.
Chem Soc Rev ; 44(8): 2135-47, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25716220

RESUMO

One of the determining factors in whether single-molecule magnets (SMMs) may be used as the smallest component of data storage, is the size of the barrier to reversal of the magnetisation, Ueff. This physical quantity depends on the magnitude of the magnetic anisotropy of a complex and the size of its spin ground state. In recent years, there has been a growing focus on maximising the anisotropy generated for a single 3d transition metal (TM) ion, by an appropriate ligand field, as a means of achieving higher barriers. Because the magnetic properties of these compounds arise from a single ion in a ligand field, they are often referred to as single-ion magnets (SIMs). Here, the synthetic chemist has a significant role to play, both in the design of ligands to enforce propitious splitting of the 3d orbitals and in the judicious choice of TM ion. Since the publication of the first 3d-based SIM, which was based on Fe(ii), many other contributions have been made to this field, using different first row TM ions, and exploring varied coordination environments for the paramagnetic ions.

13.
Inorg Chem ; 54(1): 13-5, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25495825

RESUMO

High-field electron paramagnetic resonance spectroscopy shows that the structurally distorted Mn(III) ion in Na5[Mn(L-tart)2]·12H2O (1; L-tart = L-tartrate) has a significant negative axial zero-field splitting and a small rhombic anisotropy (∼1% of D). Alternating-current magnetic susceptibility measurements demonstrate that 1, which contains isolated Mn(III) centers, displays slow relaxation of its magnetization under an applied direct-current magnetic field.

14.
J Am Chem Soc ; 136(10): 3869-74, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24555786

RESUMO

Porous materials capable of hosting external molecules are paramount in basic and applied research. Nonporous materials able to incorporate molecules via internal lattice reorganization are however extremely rare since their structural integrity usually does not resist the guest exchange processes. The novel heteroleptic low-spin Fe(II) complex [Fe(bpp)(H2L)](ClO4)2·1.5C3H6O (1; bpp = 2,6-bis(pyrazol-3-yl)pyridine, H2L = 2,6-bis(5-(2-methoxyphenyl)pyrazol-3-yl)pyridine) crystallizes as a compact discrete, nonporous material hosting solvate molecules of acetone. The system is able to extrude one-third of these molecules to lead to [Fe(bpp)(H2L)](ClO4)2·C3H6O (2), switching to the high-spin state while experiencing a profound crystallographic change. Compound 2 can be reversed to the original material upon reabsorption of acetone. Single crystal X-ray diffraction experiments on the latter system (1') and on 2 show that these are reversible single-crystal-to-single-crystal (SCSC) transformations. Likewise, complex 2 can replace acetone by MeOH and H2O to form [Fe(bpp)(H2L)](ClO4)2·1.25MeOH·0.5H2O (3) through a SCSC process that also implies a switch to the spin state. The 3→1 transformation through acetone reabsorption is also demonstrated. Besides the spin switching at room temperature, this series of SCSC transformations causes macroscopic changes in color that can be followed by the naked eye. The reversible exchanges of chemicals are therefore easily sensed at the temperature at which these occur, contrary to what is the case for most of the few existing nonporous spin-based sensors, which feature a large temperature gap between the process monitored and the mechanism of detection.

15.
Inorg Chem ; 53(7): 3290-7, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606038

RESUMO

The polydentate ligand 2,6-bis(5-(2-hydroxyphenyl)-pyrazol-3-yl)-pyridine, H4L, exhibits a series of coordination pockets favoring the establishment of metal sequences with predetermined motifs, together with a degree of flexibility for the formation of clusters with various overall topologies. With Cu(II) under strong basic conditions it has a marked tendency to stabilize a cyclic [Cu16L8] cluster. The sequential formation of this compound via [Cu7L8](2-) intermediates, recognized in its structure, is suggested by crystallographic evidence, which shows the persistent formation of the complex salt (NBu4)2[Cu7L8] in the presence of the organic cation. Also, the crystallographic identification of the related cluster [Cu11L5(OH)2(py)12] from similar reaction conditions underscores the rich multiplicity of species attainable from this simple reaction system.

16.
Chem Sci ; 15(8): 2857-2866, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404369

RESUMO

The synthesis of multivariate metal-organic frameworks (MOFs) is a well-known method for increasing the complexity of porous frameworks. In these materials, the structural differences of the ligands used in the synthesis are sufficiently subtle that they can each occupy the same site in the framework. However, multivariate or ligand scrambling approaches are rarely used in the synthesis of porous metal-organic polyhedra (MOPs) - the molecular equivalent of MOFs - despite the potential to retain a unique intrinsic pore from the individual cage while varying the extrinsic porosity of the material. Herein we directly synthesise scrambled cages across two families of lantern-type MOPs and find contrasting effects on their gas sorption properties. In one family, the scrambling approach sees a gradual increase in the BET surface area with the maximum and minimum uptakes associated with the two pure homoleptic cages. In the other, the scrambled materials display improved surface areas with respect to both of the original, homoleptic cages. Through analysis of the gas sorption isotherms, we attribute this effect to the balance of micro- and mesoporosity within the materials, which varies as a result of the scrambling approach. The gas uptake of the materials presented here underscores the tunability of cages that springs from their combination of intrinsic, extrinsic, micro- and meso-porosities.

17.
Inorg Chem ; 52(12): 7203-9, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23734732

RESUMO

The relaxation kinetics of both the thermally trapped and photoinduced high-spin (HS) states of the spin-crossover compound [Fe(H4L)2](ClO4)2·H2O·2(CH3)2CO (1) were measured and found to differ significantly. Calorimetry measurements then demonstrated that relaxation of the thermally trapped phase was concurrent with two separate processes, not previously detected as such. Determination of the photogenerated HS structure revealed a new metastable HS state of the system, much closer structurally to the low-spin phase than the thermally trapped one. This difference is proposed as the root of the disparate kinetic behavior, which is proposed to require two processes in the case of the structurally more complex thermally trapped state. Therefore, light irradiation is shown as a mechanism to decouple effectively the structural and magnetic phase transitions that occur in 1 during the course of its spin crossover.

18.
Chemistry ; 18(37): 11703-15, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22865637

RESUMO

A substituted 2,6-bis(pyrazol-3-yl)pyridine (3-bpp) ligand, H(4)L, created to facilitate intermolecular interactions in the solid, has been used to obtain four novel Fe(II) complexes: [Fe(H(4)L)(2)](ClO(4))(2)⋅2 CH(3)NO(2)⋅2 H(2)O, [Fe(H(4)L)(H(2)LBF(2))](BF(4))⋅5 C(3)H(6)O (H(2)LBF(2) is an in situ modified version of H(4)L), [Fe(H(4)L)(2)](ClO(4))(2)⋅2 C(3)H(7)OH and [Fe(H(4)L)(2)](ClO(4))(2)⋅4 C(2)H(5)OH. Changing of spin-inactive components (solvents, anions or distant ligand substituents) causes differences to the coordination geometry of the metal that are key to the magnetic properties. Magnetic measurements show that, contrary to the previously published complex [Fe(H(4)L)(2)](ClO(4))(2)⋅H(2)O⋅2 CH(3)COCH(3), the newly synthesised compounds remain in the high-spin (HS) state at all temperatures (5-300 K). A member of the known family of Fe(II)/3-bpp complexes, [Fe(3-bpp)(2)](ClO(4))(2)⋅1.75 CH(3)COCH(3)⋅1.5 Et(2)O, has also been prepared and characterised structurally. In the bulk, this compound exhibits a gradual and incomplete spin transition near 205 K. The single-crystal structure is consistent with it being HS at 250 K and partially low spin at 90 K. Structural analysis of all these compounds reveals that the exact configuration of intermolecular interactions affects dramatically the local geometry at the metal, which ultimately has a strong influence on the magnetic properties. Along this line, the geometry of Fe(II) in all published 3-bpp compounds of known structure has been examined, both by calculating various distortion indices (Σ, Θ, θ and Φ) and by continuous shape measures (CShMs). The results reveal correlations between some of these parameters and indicate that the distortions from octahedral geometry observed on HS systems are mainly due to strains arising from intermolecular interactions. As previously suggested with other related compounds, we observe here that strongly HS-distorted systems have a larger tendency to remain in that state.


Assuntos
Compostos Ferrosos/química , Pirazóis/química , Piridinas/química , Compostos Ferrosos/síntese química , Ligantes , Modelos Moleculares , Estrutura Molecular
19.
Chem Commun (Camb) ; 58(71): 9894-9897, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975475

RESUMO

We report the synthesis of photoactive carbon monoxide-releasing coordination polymer particles through the assembly of Mn(I) carbonyl complexes with bis(imidazole) ligands. The use of Mn(I) carbonyl complexes as metallic nodes in the coordination network avoids the potential for aggregation-induced self-quenching, favouring their use in the solid state.


Assuntos
Monóxido de Carbono , Complexos de Coordenação , Ligantes , Polímeros
20.
Chemistry ; 17(11): 3120-7, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21328502

RESUMO

A novel bispyrazolylpyridine ligand incorporating lateral phenol groups, H(4)L, has led to an Fe(II) spin-crossover (SCO) complex, [Fe(H(4)L)(2)][ClO(4)](2)⋅H(2)O⋅2 (CH(3))(2)CO (1), with an intricate network of intermolecular interactions. It exhibits a 40 K wide hysteresis of magnetization as a result of the spin transition (with T(0.5) of 133 and 173 K) and features an unsymmetrical and very rich structure. The latter is a consequence of the coupling between the SCO and the crystallographic transformations. The high-spin state may also be thermally trapped, exhibiting a very large T(TIESST) (≈104 K). The structure of 1 has been determined at various temperatures after submitting the crystal to different processes to recreate the key points of the hysteresis cycle and thermal trapping; 200 K, cooled to 150 K and trapped at 100 K (high spin, HS), slowly cooled to 100 K and warmed to 150 K (low spin, LS). In the HS state, the system always exhibits disorder for some components (one ClO(4)(-) and two acetone molecules) whereas the LS phases show a relative ≈9 % reduction in the Fe-N bond lengths and anisotropic contraction of the unit cell. Most importantly, in the LS state all the species are always found to be ordered. Therefore, the bistability of crystallographic order-disorder coupled to SCO is demonstrated here experimentally for the first time. The variation in the cell parameters in 1 also exhibits hysteresis. The structural and magnetic thermal variations in this compound are paralleled by changes in the heat capacity as measured by differential scanning calorimetry. Attempts to simulate the asymmetric SCO behaviour of 1 by using an Ising-like model underscore the paramount role of dynamics in the coupling between the SCO and the crystallographic transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA