Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Biol Chem ; 297(2): 100912, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174285

RESUMO

The translesion synthesis (TLS) DNA polymerases Rev1 and Polζ function together in DNA lesion bypass during DNA replication, acting as nucleotide inserter and extender polymerases, respectively. While the structural characterization of the Saccharomyces cerevisiae Polζ in its DNA-bound state has illuminated how this enzyme synthesizes DNA, a mechanistic understanding of TLS also requires probing conformational changes associated with DNA- and Rev1 binding. Here, we used single-particle cryo-electron microscopy to determine the structure of the apo Polζ holoenzyme. We show that compared with its DNA-bound state, apo Polζ displays enhanced flexibility that correlates with concerted motions associated with expansion of the Polζ DNA-binding channel upon DNA binding. We also identified a lysine residue that obstructs the DNA-binding channel in apo Polζ, suggesting a gating mechanism. The Polζ subunit Rev7 is a hub protein that directly binds Rev1 and is a component of several other protein complexes such as the shieldin DNA double-strand break repair complex. We analyzed the molecular interactions of budding yeast Rev7 in the context of Polζ and those of human Rev7 in the context of shieldin using a crystal structure of Rev7 bound to a fragment of the shieldin-3 protein. Overall, our study provides new insights into Polζ mechanism of action and the manner in which Rev7 recognizes partner proteins.


Assuntos
Microscopia Crioeletrônica/métodos , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Polimerase Dirigida por DNA/química , Humanos , Conformação Proteica
2.
Biochem Biophys Res Commun ; 572: 15-19, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34332324

RESUMO

BACKGROUND: Novel human parathyroid hormone (hPTH) peptides of unknown biological activity have recently been identified in the serum of subjects with normal renal function, chronic renal failure, and end-stage renal disease through the application of liquid chromatography-high resolution mass spectrometry. PURPOSE: of experiments: To determine the bioactivity of these peptides, we synthesized hPTH28-84, hPTH38-84, and hPTH45-84 peptides by solid phase peptide synthesis and tested their bioactivity in MC3T3-E1 mouse osteoblasts, either individually or together with the native hormone, hPTH1-84, by assessing the accumulation of 3´,5´-cyclic adenosine monophosphate (cAMP) and the induction of alkaline phosphatase activity. RESULTS: Increasing doses of hPTH1-84 (1-100 nM) increased the accumulation of cAMP and alkaline phosphatase activity in osteoblasts. hPTH28-84, hPTH38-84, and hPTH45-84 in concentrations of 1-100 nM were biologically inert. Surprisingly, 100 nM hPTH38-84 and hPTH45-84 increased the accumulation of cAMP in osteoblasts treated with increasing amounts of hPTH1-84. Human PTH28-84 had no effects on cAMP activity alone or in combination with hPTH1-84. Conversely, 100 nM hPTH38-84, hPTH45-84, and hPTH28-84 blocked the activation of alkaline phosphatase activity by hPTH1-84. CONCLUSIONS: The data show that the short carboxyl-terminal hPTH peptides, hPTH38-84 and hPTH45-84, increase the amount of cellular cAMP generated in cultured osteoblasts in response to treatment with full-length hPTH1-84 when compared to full-length hPTH1-84 alone. Human PTH28-84 had no effect on cAMP activity alone or in combination with hPTH1-84. Human PTH28-84, hPTH38-84 and hPTH45-84 reduced the effects of hPTH1-84 in osteoblasts with respect to the induction of alkaline phosphatase activity compared to hPTH1-84 alone. Short carboxyl peptides of human PTH are biologically inert but when administered together with full-length hPTH1-84 modulate the bioactivity of hPTH1-84 in osteoblasts.


Assuntos
Osteoblastos/metabolismo , Hormônio Paratireóideo/metabolismo , Células 3T3 , Animais , Células Cultivadas , Camundongos , Hormônio Paratireóideo/síntese química , Hormônio Paratireóideo/química , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 519(3): 566-571, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537378

RESUMO

Patients with non-small cell lung cancer (NSLC) often develop skeletal complications and fractures. To understand mechanisms of bone loss, we developed a murine model of non-metastatic NSLC. Decreased bone mineral density, trabecular thickness and mineralization, without an increase in bone resorption, were observed in vivo in mice injected with Lewis lung adenocarcinoma (LLC1) cells in the absence of tumor cell metastases. A decrease in trabecular bone mineral density was observed in mice injected with cell-free LLC1 CM. Plasma osteoblast biomarkers and PTH-related peptide (PTHrP) were reduced, and parathyroid hormone (PTH), 1,25-dihydroxyvitamin D, calcium and phosphate concentrations were normal in tumor-bearing mice. LLC1 cell conditioned medium (CM) inhibited alkaline phosphatase activity, osteoblast mineralization, and expression of Alpl and Ocn/Bglap mRNA in MC3T3 osteoblast cultures, whereas non-CM or CM from NIH/3T3 fibroblasts did not induce similar changes. LLC1 CM reduced Wnt3a-stimulated Tcf/Lef reporter plasmid activity and Wnt5A, Tcf1 and Lef1 mRNA expression in MC3T3 cells. Although concentrations of the Wnt inhibitor, DKK2, were increased in LLC1 CM compared to non-CM, depletion of DKK2 from LLC1 CM did not completely restore Wnt3a activity in MC3T3 cultures, and recombinant DKK2 failed to inhibit osteoblast mineralization. The data indicate that in a model of lung adenocarcinoma without bone metastases, tumor cells elaborate a secreted factor(s) that reduces bone mass, bone formation and osteoblast Wnt signaling without increases in bone resorption or calcium-regulating hormone concentrations. The factor(s) mediating this inhibition of osteoblast mineralization require further characterization.


Assuntos
Calcificação Fisiológica , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Osteoblastos/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Biochem Biophys Res Commun ; 496(2): 746-752, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29366785

RESUMO

Cancer cachexia is associated with muscle weakness and atrophy. We investigated whether 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), which has previously been shown to increase skeletal myoblast oxygen consumption rate, could reverse the deleterious effects of tumor cell conditioned medium on myoblast function. Conditioned medium from Lewis lung carcinoma (LLC1) cells inhibits oxygen consumption, increases mitochondrial fragmentation, inhibits pyruvate dehydrogenase activity, and enhances proteasomal activity in human skeletal muscle myoblasts. 1α,25(OH)2D3 reverses the tumor cell-mediated changes in mitochondrial oxygen consumption and proteasomal activity, without changing pyruvate dehydrogenase activity. 1α,25(OH)2D3 might be useful in treatment of weakness seen in association with CC.


Assuntos
Calcitriol/farmacologia , Mitocôndrias/efeitos dos fármacos , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/etiologia , Mioblastos Esqueléticos/efeitos dos fármacos , Neoplasias/complicações , Vitaminas/farmacologia , Animais , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Consumo de Oxigênio/efeitos dos fármacos
5.
Biochemistry ; 56(28): 3523-3530, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28627884

RESUMO

Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca2+-binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca2+ but detaches from DRE under Ca2+ stimulation, allowing gene expression. The Ca2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca2+. Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca2+-binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca2+ signal to CREB-mediated gene transcription.


Assuntos
Cálcio/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Repressoras/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Medição da Troca de Deutério , Motivos EF Hand , Humanos , Proteínas Interatuantes com Canais de Kv/química , Proteínas Interatuantes com Canais de Kv/genética , Espectrometria de Massas , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética
6.
J Biol Chem ; 291(3): 1514-28, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26601949

RESUMO

Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.


Assuntos
Calcitriol/metabolismo , Regulação da Expressão Gênica , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Receptores de Calcitriol/agonistas , Calcitriol/análogos & derivados , Células Cultivadas , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Interferência de RNA , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 110(15): 6199-204, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530237

RESUMO

Inactivating mutations of the SOST (sclerostin) gene are associated with overgrowth and sclerosis of the skeleton. To determine mechanisms by which increased amounts of calcium and phosphorus are accreted to enable enhanced bone mineralization in the absence of sclerostin, we measured concentrations of calciotropic and phosphaturic hormones, and urine and serum calcium and inorganic phosphorus in mice in which the sclerostin (sost) gene was replaced by the ß-D-galactosidase (lacZ) gene in the germ line. Knockout (KO) (sost(-/-)) mice had increased bone mineral density and content, increased cortical and trabecular bone thickness, and greater net bone formation as a result of increased osteoblast and decreased osteoclast surfaces compared with wild-type (WT) mice. ß-Galactosidase activity was detected in osteocytes of sost KO mice but was undetectable in WT mice. Eight-week-old, male sost KO mice had increased serum 1α,25-dihydroxyvitamin D, decreased 24,25-dihydroxyvitamin D, decreased intact fibroblast growth factor 23, and elevated inorganic phosphorus concentrations compared with age-matched WT mice. 25-Hydroxyvitamin D 1α-hydroxylase cytochrome P450 (cyp27B1) mRNA was increased in kidneys of sost KO mice compared with WT mice. Treatment of cultured proximal tubule cells with mouse recombinant sclerostin decreased cyp27B1 mRNA transcripts. Urinary calcium and renal fractional excretion of calcium were decreased in sost KO mice compared with WT mice. Sost KO and WT mice had similar serum calcium and parathyroid hormone concentrations. The data show that sclerostin not only alters bone mineralization, but also influences mineral metabolism by altering concentrations of hormones that regulate mineral accretion.


Assuntos
Cálcio/urina , Fatores de Crescimento de Fibroblastos/sangue , Glicoproteínas/metabolismo , Vitamina D/sangue , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Densidade Óssea , Cromatografia Líquida , Feminino , Fator de Crescimento de Fibroblastos 23 , Heterozigoto , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Mutação , Osteoblastos/citologia , Osteoclastos/citologia , Osteócitos/citologia , Microtomografia por Raio-X , beta-Galactosidase/metabolismo
8.
Biochem Biophys Res Commun ; 467(1): 152-6, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392310

RESUMO

The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1(fl/fl)) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1(EKO) mice). Pmca1(EKO) mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) littermates. At two months of age, Pmca1(EKO) mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P < 0.037), and reduced femoral bone mineral density (P < 0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1(EKO) mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1(EKO) mice (P < 0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1(EKO) mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3.


Assuntos
Densidade Óssea/fisiologia , Calcitriol/farmacologia , Mucosa Intestinal/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/deficiência , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Conservadores da Densidade Óssea/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Calcificação Fisiológica/fisiologia , Feminino , Técnicas de Inativação de Genes/métodos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética
9.
Biochem Biophys Res Commun ; 448(1): 83-8, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24780398

RESUMO

We show that prostacyclin production is increased in bone and osteocytes from sclerostin (Sost) knockout mice which have greatly increased bone mass. The addition of prostacyclin or a prostacyclin analog to bone forming osteoblasts enhances differentiation and matrix mineralization of osteoblasts. The increase in prostacyclin synthesis is linked to increases in ß-catenin concentrations and activity as shown by enhanced binding of lymphoid enhancer factor, Lef1, to promoter elements within the prostacyclin synthase promoter. Blockade of Wnt signaling reduces prostacyclin production in osteocytes. Increased prostacyclin production by osteocytes from sclerostin deficient mice could potentially contribute to the increased bone formation seen in this condition.


Assuntos
Epoprostenol/biossíntese , Glicoproteínas/deficiência , Osteócitos/metabolismo , Via de Sinalização Wnt/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Osso e Ossos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Camundongos , Camundongos Knockout , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
10.
J Biol Chem ; 287(47): 39439-48, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23019329

RESUMO

Downstream regulatory element antagonistic modulator (DREAM/KChIP3), a neuronal EF-hand protein, modulates pain, potassium channel activity, and binds presenilin 1. Using affinity capture of neuronal proteins by immobilized DREAM/KChIP3 in the presence and absence of calcium (Ca(2+)) followed by mass spectroscopic identification of interacting proteins, we demonstrate that in the presence of Ca(2+), DREAM/KChIP3 interacts with the EF-hand protein, calmodulin (CaM). The interaction of DREAM/KChIP3 with CaM does not occur in the absence of Ca(2+). In the absence of Ca(2+), DREAM/KChIP3 binds the EF-hand protein, calcineurin subunit-B. Ca(2+)-bound DREAM/KChIP3 binds CaM with a dissociation constant of ∼3 µM as assessed by changes in DREAM/KChIP3 intrinsic protein fluorescence in the presence of CaM. Two-dimensional (1)H,(15)N heteronuclear single quantum coherence spectra reveal changes in chemical shifts and line broadening upon the addition of CaM to (15)N DREAM/KChIP3. The amino-terminal portion of DREAM/KChIP3 is required for its binding to CaM because a construct of DREAM/KChIP3 lacking the first 94 amino-terminal residues fails to bind CaM as assessed by fluorescence spectroscopy. The addition of Ca(2+)-bound DREAM/KChIP3 increases the activation of calcineurin (CN) by calcium CaM. A DREAM/KChIP3 mutant incapable of binding Ca(2+) also stimulates calmodulin-dependent CN activity. The shortened form of DREAM/KChIP3 lacking the NH(2)-terminal amino acids fails to activate CN in the presence of calcium CaM. Our data demonstrate the interaction of DREAM/KChIP3 with the important EF-hand protein, CaM, and show that the interaction alters CN activity.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Multimerização Proteica/fisiologia , Proteínas Repressoras/metabolismo , Calcineurina/química , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/química , Calmodulina/química , Calmodulina/genética , Humanos , Proteínas Interatuantes com Canais de Kv/química , Proteínas Interatuantes com Canais de Kv/genética , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética
11.
Biochem Biophys Res Commun ; 433(4): 508-12, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23524266

RESUMO

The EF-hand protein, DREAM/KChIP3 (henceforth referred to as DREAM), regulates apoptosis by incompletely understood mechanisms. We demonstrate that in the presence of Ca2+, DREAM interacts with hexokinase I, a protein known to bind mitochondria and regulate apoptosis. A mutant DREAM protein construct incapable of binding Ca2+ does not associate with hexokinase I. The amino-terminal portion of DREAM is required for binding to hexokinase I, as a DREAM construct lacking the first 94 amino terminal residues fails to bind hexokinase I. Expression of DREAM in neuroblastoma cells enhances cisplatin mediated caspase-3 activity. Simultaneous expression of hexokinase I in such cells reduces DREAM-stimulated apoptosis. DREAM overexpression in neuroblastoma cells reduces hexokinase I localization on isolated mitochondria. The interaction of DREAM with hexokinase I may be important in the regulation of neuronal apoptosis.


Assuntos
Apoptose , Hexoquinase/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Repressoras/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Ácido Edético/metabolismo , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Glicólise , Hexoquinase/genética , Proteínas Interatuantes com Canais de Kv/genética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Transfecção
12.
Biochem Biophys Res Commun ; 417(2): 830-5, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22206666

RESUMO

The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on a sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column. The columns were extensively washed with low ionic strength buffer, and bound proteins were eluted with buffer containing 1M sodium chloride. Eluted proteins were separated by denaturing sodium-dodecyl sulfate gel electrophoresis and were identified by mass spectrometry. Several previously unidentified full-length sclerostin-interacting proteins such as alkaline phosphatase, carbonic anhydrase, gremlin-1, fetuin A, midkine, annexin A1 and A2, and collagen α1, which have established roles in bone formation or resorption processes, were bound to the sclerostin-MBP amylose resin but not to the MBP amylose resin. Other full-length sclerostin-interacting proteins such as casein kinase II and secreted frizzled related protein 4 that modulate Wnt signaling were identified. Several peptides derived from proteins such as Phex, asporin and follistatin that regulate bone metabolism also bound sclerostin. Sclerostin interacts with multiple proteins that alter bone formation and resorption and is likely to function by altering several biologically relevant pathways in bone.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Mapeamento de Interação de Proteínas , Proteoma , Proteínas Adaptadoras de Transdução de Sinal , Fosfatase Alcalina/metabolismo , Amilose/química , Animais , Técnica de Desmineralização Óssea , Proteínas Morfogenéticas Ósseas/química , Osso e Ossos/química , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Cromatografia de Afinidade , Marcadores Genéticos , Humanos , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Sprague-Dawley
13.
J Appl Physiol (1985) ; 131(1): 95-106, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34013750

RESUMO

Diseases or conditions where diaphragm muscle (DIAm) function is impaired, including chronic obstructive pulmonary disease, cachexia, asthma, and aging, are associated with an increased risk of pulmonary symptoms, longer duration of hospitalizations, and increasing requirements for mechanical ventilation. Vitamin D deficiency is associated with proximal muscle weakness that resolves following therapy with vitamin D3. Skeletal muscle expresses the vitamin D receptor (VDR), which responds to the active form of vitamin D, 1,25-dihydroxyvitamin D3 by altering gene expression in target cells. In knockout mice without skeletal muscle VDRs, there is marked atrophy of muscle fibers and a change in skeletal muscle biochemistry. We used a tamoxifen-inducible skeletal muscle Cre recombinase in Vdrfl/fl mice (Vdrfl/fl actin.iCre+) to assess the role of muscle-specific VDR signaling on DIAm-specific force, fatigability, and fiber type-dependent morphology. Vdrfl/fl actin.iCre+ mice treated with vehicle and Vdrfl/fl mice treated with tamoxifen served as controls. Seven days following the final treatment, mice were euthanized, the DIAm was removed, and isometric force and fatigue were assessed in DIAm strips using direct muscle stimulation. The proportion and cross-sectional areas of DIAm fiber types were evaluated by immunolabeling with myosin heavy chain antibodies differentiating type I, IIa and IIx, and/or IIb fibers. We show that in mice with skeletal muscle-specific VDR deletion, maximum specific force and residual force following fatigue are impaired, along with a selective atrophy of type IIx and/or IIb fibers. These results show that the VDR has a significant biological effect on DIAm function independent of systemic effects on mineral metabolism.NEW & NOTEWORTHY Vitamin D deficiency and vitamin D receptor (VDR) polymorphisms are associated with adverse pulmonary and diaphragm muscle (DIAm)-associated respiratory outcomes. We used a skeletal muscle-specific tamoxifen-inducible VDR knockout to investigate DIAm dysfunction following reduced VDR signaling. Marked DIAm weakness and atrophy of type IIx and/or IIb fibers are present in muscle-specific tamoxifen-induced VDR knockout mice compared with controls. These results show that the VDR has a significant biological effect on DIAm function independent of systemic effects on mineral metabolism.


Assuntos
Diafragma , Receptores de Calcitriol , Animais , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas , Debilidade Muscular/genética , Músculo Esquelético , Receptores de Calcitriol/genética , Vitamina D
14.
Biochem Biophys Res Commun ; 402(2): 421-4, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20951118

RESUMO

To gain insights into the mechanism of action of sclerostin, a protein that regulates bone mass, we performed yeast two-hybrid analyses using human SOST (sclerostin) cDNA cloned into pGBKT7 DNA-binding domain vector as a bait, and a normalized, high-complexity, universal cDNA library in a GAL4 activating domain vector. We identified an interaction between sclerostin and the carboxyl-terminal portion of the receptor tyrosine-protein kinase erbB-3. To determine the biological relevance of this interaction, we treated MC3T3-E1 mouse osteoblast cells transfected with either a SOST expression plasmid or a control vector, with recombinant heregulin/neuregulin. Phospho-p44/42 (Thr202/Tyr204) MAPK was assessed in heregulin/neuregulin treated cells. We observed an increase in phospho-p44/42 (Thr202/Tyr204) MAPK concentrations in SOST transfected cells but not in cells transfected with a control vector, thus demonstrating a modulatory effect of sclerostin on heregulin/neuregulin signaling in osteoblasts. The data demonstrate that sclerostin functions in part, by modulating the activity of erbB-3.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Receptor ErbB-3/metabolismo , Células 3T3 , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/genética , Linhagem Celular , Biblioteca Gênica , Marcadores Genéticos/genética , Humanos , Camundongos , Dados de Sequência Molecular , Osteoblastos/metabolismo , Receptor ErbB-3/genética , Técnicas do Sistema de Duplo-Híbrido
15.
Biochem Biophys Res Commun ; 392(1): 36-40, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20043874

RESUMO

Sclerostin, a secreted glycoprotein, regulates osteoblast function. Using yeast two-hybrid and direct protein interaction analyses, we demonstrate that sclerostin binds the Wnt-modulating and Wnt-modulated, extracellular matrix protein, cysteine-rich protein 61 (Cyr61, CCN1), which regulates mesenchymal stem cell proliferation and differentiation, osteoblast and osteoclast function, and angiogenesis. Sclerostin was shown to inhibit Cyr61-mediated fibroblast attachment, and Cyr61 together with sclerostin increases vascular endothelial cell migration and increases osteoblast cell division. The data show that sclerostin binds to and influences the activity of Cyr61.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Células 3T3 , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Morfogenéticas Ósseas/genética , Movimento Celular , Proliferação de Células , Proteína Rica em Cisteína 61/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Marcadores Genéticos/genética , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Técnicas do Sistema de Duplo-Híbrido
16.
Proc Natl Acad Sci U S A ; 104(26): 11085-90, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17566100

RESUMO

The mechanisms by which phosphorus homeostasis is preserved in mammals are not completely understood. We demonstrate the presence of a mechanism by which the intestine detects the presence of increased dietary phosphate and rapidly increases renal phosphate excretion. The mechanism is of physiological relevance because it maintains plasma phosphate concentrations in the normal range after ingestion of a phosphate-containing meal. When inorganic phosphate is infused into the duodenum, there is a rapid increase in the renal fractional excretion of phosphate (FE Pi). The phosphaturic effect of intestinal phosphate is specific for phosphate because administration of sodium chloride does not elicit a similar response. Phosphaturia after intestinal phosphate administration occurs in thyro-parathyroidectomized rats, demonstrating that parathyroid hormone is not essential for this effect. The increase in renal FE Pi in response to the intestinal administration of phosphate occurs without changes in plasma concentrations of phosphate (filtered load), parathyroid hormone, FGF-23, or secreted frizzled related protein-4. Denervation of the kidney does not attenuate phosphaturia elicited after intestinal phosphate administration. Phosphaturia is not elicited when phosphate is instilled in other parts of the gastrointestinal tract such as the stomach. Infusion of homogenates of the duodenal mucosa increases FE Pi, which demonstrates the presence of one or more substances within the intestinal mucosa that directly modulate renal phosphate reabsorption. Our experiments demonstrate the presence of a previously unrecognized phosphate gut-renal axis that rapidly modulates renal phosphate excretion after the intestinal administration of phosphate.


Assuntos
Absorção/fisiologia , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fosfatos/farmacocinética , Animais , Duodeno/metabolismo , Absorção Intestinal , Paratireoidectomia , Ratos
17.
PLoS One ; 14(12): e0226440, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851697

RESUMO

BACKGROUND: To understand the underlying mechanisms of cardiac dysfunction in cancer, we examined cardiac function, protein synthesis, mitochondrial function and gene expression in a model of heart failure in mice injected with Lewis lung carcinoma (LLC1) cells. EXPERIMENTAL DESIGN: Seven week-old C57BL/J6 male and female mice were injected with LLC1 cells or vehicle. Cardiac ejection fraction, ventricular wall and septal thickness were reduced in male, but not female, tumor-bearing mice compared to vehicle-injected control mice. Cardiac protein synthesis was reduced in tumor-bearing male mice compared to control mice (p = 0.025). Aspect ratio and form factor of cardiac mitochondria from the tumor-bearing mice were increased compared control mice (p = 0.042 and p = 0.0032, respectively) indicating a more fused mitochondrial network in the hearts of tumor-bearing mice. In cultured cardiomyocytes maximal oxygen consumption and mitochondrial reserve capacity were reduced in cells exposed to tumor cell-conditioned medium compared to non-conditioned medium (p = 0.0059, p = 0.0010). Whole transcriptome sequencing of cardiac ventricular muscle from tumor-bearing vs. control mice showed altered expression of 1648 RNA transcripts with a false discovery rate of less than 0.05. Of these, 54 RNA transcripts were reduced ≤ 0.5 fold, and 3 RNA transcripts were increased by ≥1.5-fold in tumor-bearing mouse heart compared to control. Notably, the expression of mRNAs for apelin (Apln), the apelin receptor (Aplnr), the N-myc proto-oncogene, early growth protein (Egr1), and the transcription factor Sox9 were reduced by >50%, whereas the mRNA for growth arrest and DNA-damage-inducible, beta (Gadd45b) is increased >2-fold, in ventricular tissue from tumor-bearing mice compared to control mice. CONCLUSIONS: Lung tumor cells induce heart failure in male mice in association with reduced protein synthesis, mitochondrial function, and the expression of the mRNAs for inotropic and growth factors. These data provide new mechanistic insights into cancer-associated heart failure that may help unlock treatment options for this condition.


Assuntos
Insuficiência Cardíaca/etiologia , Neoplasias Pulmonares/complicações , Mitocôndrias Cardíacas/metabolismo , Biossíntese de Proteínas , Animais , Apelina/metabolismo , Apoptose/genética , Carcinoma Pulmonar de Lewis , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Feminino , Insuficiência Cardíaca/fisiopatologia , Testes de Função Cardíaca , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Caracteres Sexuais , Transcriptoma
18.
J Clin Invest ; 112(5): 785-94, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12952927

RESUMO

Tumors associated with osteomalacia elaborate the novel factor(s), phosphatonin(s), which causes phosphaturia and hypophosphatemia by cAMP-independent pathways. We show that secreted frizzled-related protein-4 (sFRP-4), a protein highly expressed in such tumors, is a circulating phosphaturic factor that antagonizes renal Wnt-signaling. In cultured opossum renal epithelial cells, sFRP-4 specifically inhibited sodium-dependent phosphate transport. Infusions of sFRP-4 in normal rats over 2 hours specifically increased renal fractional excretion of inorganic phosphate (FEPi) from 14% +/- 2% to 34% +/- 5% (mean +/- SEM, P < 0.01). Urinary cAMP and calcium excretion were unchanged. In thyro-parathyroidectomized rats, sFRP-4 increased FEPi from 0.7% +/- 0.2% to 3.8% +/- 1.2% (P < 0.05), demonstrating that sFRP-4 inhibits renal inorganic phosphate reabsorption by PTH-independent mechanisms. Administration of sFRP-4 to intact rats over 8 hours increased FEPi, decreased serum phosphate (1.95 +/- 0.1 to 1.53 +/- 0.09 mmol/l, P < 0.05) but did not alter serum 1alpha, 25-dihydroxyvitamin D, renal 25-hydroxyvitamin D 1alpha-hydroxylase cytochrome P450, and sodium-phosphate cotransporter mRNA concentrations. Infusion of sFRP-4 antagonizes Wnt action as demonstrated by reduced renal beta-catenin and increased phosphorylated beta-catenin concentrations. The sFRP-4 is detectable in normal human serum and in the serum of a patient with tumor-induced osteomalacia. Thus, sFRP-4 displays phosphatonin-like properties, because it is a circulating protein that promotes phosphaturia and hypophosphatemia and blunts compensatory increases in 1alpha, 25-dihydroxyvitamin D.


Assuntos
Rim/metabolismo , Osteomalacia/metabolismo , Síndromes Paraneoplásicas/metabolismo , Fosfatos/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Proteínas de Peixe-Zebra , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Calcitriol/sangue , Sistema Enzimático do Citocromo P-450/genética , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/fisiologia , Humanos , Gambás , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Ratos , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato , Esteroide Hidroxilases/genética , Simportadores/fisiologia , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase , Proteínas Wnt
19.
J Am Soc Mass Spectrom ; 17(8): 1158-71, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16750384

RESUMO

We analyzed the metal-binding properties of human centrin-2 (HsCen-2) and followed the changes in HsCen-2 structure upon metal-binding using micro-electrospray ionization mass spectrometry (muESI-MS). Apo-HsCen-2 is mostly monomeric. The ESI spectra of HsCen-2 show two charge-state distributions, representing two conformations of the protein. HsCen-2 binds four moles calcium/mol protein: one mol of calcium with high affinity, one additional mol of calcium with lower affinity, and two moles of calcium at low affinity sites. HsCen-2 binds four moles of magnesium/mol protein. The conformation giving the lower charge-state HsCen-2 by ESI, binds calcium and magnesium more readily than does the higher charge-state HsCen-2. Both conformations of HsCen-2 bind calcium more readily than magnesium. Calcium was more effective in displacing magnesium bound to HsCen-2 than vice versa. Binding of a peptide from a known binding partner, the xeroderma pigmentosum complementation group protein C (XPC), to apo-HsCen-2, occurs in the presence or the absence of calcium. Near and far-UV CD spectra of HsCen-2 show little difference with addition of calcium or magnesium. Minor changes in secondary structure are noted. Melting curves derived from temperature dependence of molar ellipticity at 222 nm for HsCen-2 show that calcium increases protein stability whereas magnesium does not. Delta 25 HsCen-2 behaves similarly to HsCen-2. We conclude that HsCen-2 binds calcium and magnesium and that calcium modulates HsCen-2 structure and function by increasing its stability without undergoing significant changes in secondary or tertiary structure.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Metais/química , Microquímica/métodos , Modelos Químicos , Modelos Moleculares , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Ultravioleta/métodos , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica
20.
Oncogene ; 21(23): 3706-14, 2002 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12032839

RESUMO

1alpha,25-Dihydroxyvitamin D(3)(1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D(3), mediates anti-proliferative effects in cells by regulating the expression of 1alpha,25(OH)(2)D(3)-responsive genes. The expression of the proliferation-promoting Immediate Early gene X-1 (IEX-1) is reduced by 1alpha,25(OH)(2)D(3) through unknown mechanisms. Here we report the presence of a novel inhibitory hexameric repeat DNA response element in the promoter of the human IEX-1 gene that mediates 1alpha,25(OH)(2)D(3)-associated IEX-1 gene repression. To localize a vitamin D sensitive DNA response element we transfected the keratinocyte-like cell line, HaCaT, (referred as HaCaT) with a series of plasmids containing full-length and truncated IEX-1 promoter elements fused to the luciferase reporter gene in the absence or presence of 1alpha,25(OH)(2)D(3), and we performed electrophoretic gel mobility assays in the presence of receptors for 1alpha,25(OH)(2)D(3) (vitamin D receptor, VDR) and 9-cis-retinoic acid (RXRalpha). We mapped a negative response element between nt -405 and -391(15 bp) of theIEX-1 promoter (5'-TGAACC AGG GAGTCA-3') that mediates transcriptional inhibition in response to 1alpha,25(OH)(2)D(3) and which requires expression of both nuclear receptors for 1alpha,25(OH)(2)D(3) and 9-cis-retinoic acid. Our data indicate that the physiological repression of IEX-1 gene expression by 1alpha,25(OH)(2)D(3) is directly mediated by nuclear VDR/RXRalpha heterodimers through a specific transcriptional element.


Assuntos
Regulação da Expressão Gênica , Proteínas Imediatamente Precoces/genética , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias , Regiões Promotoras Genéticas/genética , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Proteínas Reguladoras de Apoptose , Sequência de Bases , Linhagem Celular , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Proteínas de Membrana , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Receptores do Ácido Retinoico/metabolismo , Elementos de Resposta/genética , Receptores X de Retinoides , Sequências Repetidas Terminais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Vitamina D/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA