Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284399

RESUMO

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Assuntos
Quirópteros/virologia , Gammaretrovirus/isolamento & purificação , Animais , Austrália , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Phascolarctidae/virologia
2.
Proc Natl Acad Sci U S A ; 117(46): 29190-29201, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139552

RESUMO

Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.


Assuntos
Quirópteros/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/veterinária , Infecções por Henipavirus/virologia , Vírus Nipah/classificação , Vírus Nipah/genética , Animais , Ásia , Bangladesh/epidemiologia , Surtos de Doenças , Feminino , Especificidade de Hospedeiro , Humanos , Imunidade , Masculino , Modelos Biológicos , Epidemiologia Molecular , Vírus Nipah/imunologia , Filogenia , Zoonoses/epidemiologia , Zoonoses/imunologia , Zoonoses/transmissão , Zoonoses/virologia
3.
PLoS Pathog ; 16(3): e1008412, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226041

RESUMO

Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection.


Assuntos
Antígenos Virais/imunologia , Vírus Hendra/imunologia , Infecções por Henipavirus/imunologia , Imunidade Celular , Imunidade Inata , Pulmão/imunologia , Modelos Imunológicos , Animais , Antígenos Virais/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quirópteros , Furões , Vírus Hendra/genética , Infecções por Henipavirus/genética , Infecções por Henipavirus/patologia , Interferons/genética , Interferons/imunologia , Pulmão/patologia , Pulmão/virologia , Especificidade da Espécie
4.
Emerg Infect Dis ; 25(1): 166-170, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561301

RESUMO

Despite molecular and serologic evidence of Nipah virus in bats from various locations, attempts to isolate live virus have been largely unsuccessful. We report isolation and full-genome characterization of 10 Nipah virus isolates from Pteropus medius bats sampled in Bangladesh during 2013 and 2014.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/virologia , Genoma Viral/genética , Infecções por Henipavirus/veterinária , Vírus Nipah/genética , Animais , Bangladesh , Geografia , Infecções por Henipavirus/virologia , Humanos , Vírus Nipah/isolamento & purificação , Filogenia , Zoonoses
5.
Nature ; 503(7477): 535-8, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24172901

RESUMO

The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.


Assuntos
Quirópteros/virologia , Peptidil Dipeptidase A/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , China , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Fezes/virologia , Imunofluorescência , Genoma Viral/genética , Especificidade de Hospedeiro , Humanos , Dados de Sequência Molecular , Pandemias/prevenção & controle , Pandemias/veterinária , Peptidil Dipeptidase A/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Virais/genética , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/ultraestrutura , Síndrome Respiratória Aguda Grave/prevenção & controle , Síndrome Respiratória Aguda Grave/transmissão , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírion/isolamento & purificação , Vírion/ultraestrutura , Internalização do Vírus , Viverridae/metabolismo
7.
J Gen Virol ; 96(Pt 1): 24-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25228492

RESUMO

Bats have been found to harbour a number of new emerging viruses with zoonotic potential, and there has been a great deal of interest in identifying novel bat pathogens to determine the risk to human and animal health. Many groups have identified novel viruses in bats by detection of viral nucleic acid; however, virus isolation is still a challenge, and there are few reports of viral isolates from bats. In recent years, our group has developed optimized procedures for virus isolation from bat urine, including the use of primary bat cells. In previous reports, we have described the isolation of Hendra virus, Menangle virus and Cedar virus in Queensland, Australia. Here, we report the isolation of four additional novel bat paramyxoviruses from urine collected from beneath pteropid bat (flying fox) colonies in Queensland and New South Wales during 2009-2011.


Assuntos
Quirópteros/virologia , Paramyxovirinae/genética , Paramyxovirinae/isolamento & purificação , Urina/virologia , Animais , Austrália , Infecções por Paramyxoviridae/virologia , Zoonoses/virologia
8.
Proc Biol Sci ; 282(1798): 20142124, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25392474

RESUMO

Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.


Assuntos
Quirópteros/virologia , Modelos Biológicos , Infecções por Vírus de RNA/transmissão , Vírus de RNA/fisiologia , Zoonoses/transmissão , Animais , Humanos , Queensland , Infecções por Vírus de RNA/virologia , Vírus de RNA/isolamento & purificação , Zoonoses/virologia
9.
Protein Expr Purif ; 116: 19-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26196500

RESUMO

Hendra virus (family Paramyxoviridae) is a negative sense single-stranded RNA virus (NSRV) which has been found to cause disease in humans, horses, and experimentally in other animals, e.g. pigs and cats. Pteropid bats commonly known as flying foxes have been identified as the natural host reservoir. The Hendra virus nucleocapsid protein (HeV N) represents the most abundant viral protein produced by the host cell, and is highly immunogenic with naturally infected humans and horses producing specific antibodies towards this protein. The purpose of this study was to express and purify soluble, functionally active recombinant HeV N, suitable for use as an immunodiagnostic reagent to detect antibodies against HeV. We expressed both full-length HeV N, (HeV NFL), and a C-terminal truncated form, (HeV NCORE), using a bacterial heterologous expression system. Both HeV N constructs were engineered with an N-terminal Hisx6 tag, and purified using a combination of immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Purified recombinant HeV N proteins self-assembled into soluble higher order oligomers as determined by SEC and negative-stain transmission electron microscopy. Both HeV N proteins were highly immuno-reactive with sera from animals and humans infected with either HeV or the closely related Nipah virus (NiV), but displayed no immuno-reactivity towards sera from animals infected with a non-pathogenic paramyxovirus (CedPV), or animals receiving Equivac® (HeV G glycoprotein subunit vaccine), using a Luminex-based multiplexed microsphere assay.


Assuntos
Vírus Hendra/química , Vírus Hendra/imunologia , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Vírus Hendra/genética , Vírus Hendra/ultraestrutura , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Cavalos , Humanos , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/ultraestrutura , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/ultraestrutura , Suínos
10.
J Virol ; 87(3): 1348-58, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23152534

RESUMO

Bats carry a variety of paramyxoviruses that impact human and domestic animal health when spillover occurs. Recent studies have shown a great diversity of paramyxoviruses in an urban-roosting population of straw-colored fruit bats in Ghana. Here, we investigate this further through virus isolation and describe two novel rubulaviruses: Achimota virus 1 (AchPV1) and Achimota virus 2 (AchPV2). The viruses form a phylogenetic cluster with each other and other bat-derived rubulaviruses, such as Tuhoko viruses, Menangle virus, and Tioman virus. We developed AchPV1- and AchPV2-specific serological assays and found evidence of infection with both viruses in Eidolon helvum across sub-Saharan Africa and on islands in the Gulf of Guinea. Longitudinal sampling of E. helvum indicates virus persistence within fruit bat populations and suggests spread of AchPVs via horizontal transmission. We also detected possible serological evidence of human infection with AchPV2 in Ghana and Tanzania. It is likely that clinically significant zoonotic spillover of chiropteran paramyxoviruses could be missed throughout much of Africa where health surveillance and diagnostics are poor and comorbidities, such as infection with HIV or Plasmodium sp., are common.


Assuntos
Quirópteros/virologia , Infecções por Rubulavirus/veterinária , Infecções por Rubulavirus/virologia , Rubulavirus/classificação , Rubulavirus/isolamento & purificação , Zoonoses/epidemiologia , Adolescente , Adulto , África/epidemiologia , Animais , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Rubulavirus/genética , Rubulavirus/patogenicidade , Infecções por Rubulavirus/epidemiologia , Análise de Sequência de DNA , Estudos Soroepidemiológicos
11.
PLoS Pathog ; 8(8): e1002836, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879820

RESUMO

The genus Henipavirus in the family Paramyxoviridae contains two viruses, Hendra virus (HeV) and Nipah virus (NiV) for which pteropid bats act as the main natural reservoir. Each virus also causes serious and commonly lethal infection of people as well as various species of domestic animals, however little is known about the associated mechanisms of pathogenesis. Here, we report the isolation and characterization of a new paramyxovirus from pteropid bats, Cedar virus (CedPV), which shares significant features with the known henipaviruses. The genome size (18,162 nt) and organization of CedPV is very similar to that of HeV and NiV; its nucleocapsid protein displays antigenic cross-reactivity with henipaviruses; and it uses the same receptor molecule (ephrin-B2) for entry during infection. Preliminary challenge studies with CedPV in ferrets and guinea pigs, both susceptible to infection and disease with known henipaviruses, confirmed virus replication and production of neutralizing antibodies although clinical disease was not observed. In this context, it is interesting to note that the major genetic difference between CedPV and HeV or NiV lies within the coding strategy of the P gene, which is known to play an important role in evading the host innate immune system. Unlike HeV, NiV, and almost all known paramyxoviruses, the CedPV P gene lacks both RNA editing and also the coding capacity for the highly conserved V protein. Preliminary study indicated that CedPV infection of human cells induces a more robust IFN-ß response than HeV.


Assuntos
Quirópteros/virologia , Genoma Viral/imunologia , Infecções por Henipavirus , Henipavirus , Evasão da Resposta Imune , Imunidade Inata , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Austrália , Quirópteros/imunologia , Furões , Cobaias , Henipavirus/genética , Henipavirus/imunologia , Henipavirus/isolamento & purificação , Infecções por Henipavirus/sangue , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Humanos
12.
Emerg Infect Dis ; 19(2): 270-3, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23343532

RESUMO

To determine geographic range for Ebola virus, we tested 276 bats in Bangladesh. Five (3.5%) bats were positive for antibodies against Ebola Zaire and Reston viruses; no virus was detected by PCR. These bats might be a reservoir for Ebola or Ebola-like viruses, and extend the range of filoviruses to mainland Asia.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/veterinária , Animais , Anticorpos Antivirais/sangue , Bangladesh/epidemiologia , Quirópteros/imunologia , Quirópteros/virologia , Feminino , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/imunologia , Masculino
13.
J Virol ; 86(15): 8014-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623774

RESUMO

Herpesviruses or herpesviral sequences have been identified in various bat species. Here, we report the isolation, cell tropism, and complete genome sequence of a novel betaherpesvirus from the bat Miniopterus schreibersii (MsHV). In primary cell culture, MsHV causes cytopathic effects (CPE) and reaches peak virus production 2 weeks after infection. MsHV was found to infect and replicate less efficiently in a feline kidney cell, CRFK, and failed to replicate in 13 other cell lines tested. Sequencing of the MsHV genome using the 454 system, with a 224-fold coverage, revealed a genome size of 222,870 bp. The genome was extensively analyzed in comparison to those of related viruses. Of the 190 predicted open reading frames (ORFs), 40 were identified as herpesvirus core genes. Among 93 proteins with identifiable homologues in tree shrew herpesvirus (THV), human cytomegalovirus (HCMV), or rat cytomegalovirus (RCMV), most had highest sequence identities with THV counterparts. However, the MsHV genome organization is colinear with that of RCMV rather than that of THV. The following unique features were discovered in the MsHV genome. One predicted protein, B125, is similar to human herpesvirus 6 (HHV-6) U94, a homologue of the parvovirus Rep protein. For the unique ORFs, 7 are predicted to encode major histocompatibility complex (MHC)-related proteins, 2 to encode MHC class I homologues, and 3 to encode MHC class II homologues; 4 encode the homologues of C-type lectin- or natural killer cell lectin-like receptors;, and the products of a unique gene family, the b149 family, of 16 members, have no significant sequence identity with known proteins but exhibit immunoglobulin-like beta-sandwich domains revealed by three-dimensional (3D) structural prediction. To our knowledge, MsHV is the first virus genome known to encode MHC class II homologues.


Assuntos
Genoma Viral , Herpesviridae/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Lectinas Tipo C/genética , Fases de Leitura Aberta/genética , Proteínas Virais/genética , Animais , Gatos , Linhagem Celular , Quirópteros , Herpesviridae/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Proteínas Virais/metabolismo
14.
Curr Top Microbiol Immunol ; 359: 11-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22476530

RESUMO

Hendra virus, a novel and fatally zoonotic member of the family Paramyxoviridae, was first described in Australia in 1994. Periodic spillover from its natural host (fruit bats) results in catastrophic disease in horses and occasionally the subsequent infection of humans. Prior to 2011, 14 equine incidents involving seven human cases (four fatal) were recorded. The year 2011 saw a dramatic departure from the sporadic incidents of the previous 16 years, with a cluster of 18 incidents in a single 3-month period. The fundamental difference in 2011 was the total number of incidents, the geographic clustering, and the expanded geographic range. The 2011 cluster more than doubled the total number of incidents previously reported, and poses the possibility of a new HeV infection paradigm. Epidemiologic evidence suggests that compelling additional host and/or environmental factors were at play.


Assuntos
Surtos de Doenças , Vírus Hendra/patogenicidade , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/epidemiologia , Zoonoses/epidemiologia , Animais , Austrália/epidemiologia , Quirópteros/virologia , Ecossistema , Vírus Hendra/isolamento & purificação , Infecções por Henipavirus/virologia , Doenças dos Cavalos/virologia , Cavalos/virologia , Humanos , Filogeografia , Zoonoses/virologia
15.
J Immunol ; 186(5): 3138-47, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278349

RESUMO

Bats are known to harbor a number of emerging and re-emerging zoonotic viruses, many of which are highly pathogenic in other mammals but result in no clinical symptoms in bats. The ability of bats to coexist with viruses may be the result of rapid control of viral replication early in the immune response. IFNs provide the first line of defense against viral infection in vertebrates. Type III IFNs (IFN-λs) are a recently identified IFN family that share similar antiviral activities with type I IFNs. To our knowledge, we demonstrate the first functional analysis of type III IFNs from any species of bat, with the investigation of two IFN-λ genes from the pteropid bat, Pteropus alecto. Our results demonstrate that bat type III IFN has similar antiviral activity to type I and III IFNs from other mammals. In addition, the two bat type III IFNs are differentially induced relative to each other and to type I IFNs after treatment or transfection with synthetic dsRNA. Infection with the bat paramyxovirus, Tioman virus, resulted in no upregulation of type I IFN production in bat splenocytes but was capable of inducing a type III IFN response in three of the four bats tested. To our knowledge, this is the first report to describe the simultaneous suppression of type I IFN and induction of type III IFN after virus infection. These results may have important implications for the role of type III IFNs in the ability of bats to coexist with viruses.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Interleucinas/biossíntese , Interleucinas/genética , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Linhagem Celular Transformada , Quirópteros/genética , Chlorocebus aethiops , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/metabolismo , Interferon Tipo I/fisiologia , Interleucinas/fisiologia , Camundongos , Modelos Animais , Dados de Sequência Molecular , Orthoreovirus de Mamíferos/imunologia , Orthoreovirus de Mamíferos/metabolismo , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/metabolismo , Células Vero
16.
BMC Genomics ; 13: 261, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716473

RESUMO

BACKGROUND: Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. RESULTS: Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. CONCLUSIONS: This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection.


Assuntos
Quirópteros/genética , Quirópteros/imunologia , Reservatórios de Doenças/virologia , Vetores de Doenças , Sistema Imunitário/metabolismo , Imunidade Adaptativa/genética , Sequência de Aminoácidos , Animais , Austrália , Quirópteros/virologia , Sequência Conservada/genética , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Cavalos/genética , Humanos , Imunidade Inata/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Transcriptoma/genética
17.
Emerg Infect Dis ; 17(12): 2232-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22172152

RESUMO

Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus harbored by Australian flying foxes with sporadic spillovers directly to horses. Although the mode and critical control points of HeV spillover to horses from flying foxes, and the risk for transmission from infected horses to other horses and humans, are poorly understood, we successfully established systemic HeV disease in 3 horses exposed to Hendra virus/Australia/Horse/2008/Redlands by the oronasal route, a plausible route for natural infection. In 2 of the 3 animals, HeV RNA was detected continually in nasal swabs from as early as 2 days postexposure, indicating that systemic spread of the virus may be preceded by local viral replication in the nasal cavity or nasopharynx. Our data suggest that a critical factor for reducing HeV exposure risk to humans includes early consideration of HeV in the differential diagnosis and institution of appropriate infection control procedures.


Assuntos
Vírus Hendra , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/virologia , Animais , Austrália , Quirópteros/virologia , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/veterinária , Doenças Transmissíveis Emergentes/virologia , Feminino , Vírus Hendra/genética , Vírus Hendra/isolamento & purificação , Vírus Hendra/fisiologia , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/virologia , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/transmissão , Cavalos , Humanos , Queensland , Carga Viral , Replicação Viral , Eliminação de Partículas Virais , Zoonoses/transmissão , Zoonoses/virologia
18.
J Gen Virol ; 92(Pt 12): 2930-2936, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21849518

RESUMO

We previously described three new Malaysian orthoreoviruses designated Pulau virus, Melaka virus and Kampar virus. Melaka and Kampar viruses were shown to cause respiratory disease in humans. These viruses, together with Nelson Bay virus, isolated from Australian bats, are tentatively classified as different strains within the species Pteropine orthoreovirus (PRV), formerly known as Nelson Bay orthoreovirus, based on the small (S) genome segments. Here we report the sequences of the large (L) and medium (M) segments, thus completing the whole-genome characterization of the four PRVs. All L and M segments were highly conserved in size and sequence. Conserved functional motifs previously identified in other orthoreovirus gene products were also found in the deduced proteins encoded by the cognate segments of these viruses. Detailed sequence analysis identified two genetic lineages divided into the Australian and Malaysian PRVs, and potential genetic reassortment among the M and S segments of the three Malaysian viruses.


Assuntos
Quirópteros/virologia , Evolução Molecular , Genoma Viral , Orthoreovirus/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Austrália , Malásia , Dados de Sequência Molecular , Orthoreovirus/classificação , Orthoreovirus/isolamento & purificação , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
19.
PLoS Pathog ; 5(10): e1000642, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19888339

RESUMO

Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50) within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/patogenicidade , Doença Aguda , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Modelos Animais de Doenças , Furões , Glicoproteínas/imunologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/patologia , Humanos , Imuno-Histoquímica , Vírus Nipah/imunologia , RNA Viral/metabolismo , Distribuição Tecidual , Proteínas do Envelope Viral/imunologia , Carga Viral
20.
Transbound Emerg Dis ; 68(4): 2628-2632, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33142031

RESUMO

Many infectious pathogens can be transmitted by highly mobile species, like bats that can act as reservoir hosts for viruses such as henipaviruses, lyssaviruses and coronaviruses. In this study, we investigated the seroepidemiology of protein antigens to Severe acute respiratory syndrome virus (SARS-CoV-1) and Middle eastern respiratory syndrome virus (MERS-CoV) in Grey-headed flying foxes (Pteropus poliocephalus) in Adelaide, Australia sampled between September 2015 and February 2018. A total of 301 serum samples were collected and evaluated using a multiplex Luminex binding assay, and median fluorescence intensity thresholds were determined using finite-mixture modelling. We found evidence of antibodies reactive to SARS-CoV-1 or a related antigen with 42.5% (CI: 34.3%-51.2%) seroprevalence but insufficient evidence of reactivity to MERS-CoV antigen. This study provides evidence that the Grey-headed flying foxes sampled in Adelaide have been exposed to a SARS-like coronavirus.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Coronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Lyssavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA